• Full Screen
  • Wide Screen
  • Narrow Screen
  • Increase font size
  • Default font size
  • Decrease font size

Join Us on Facebook

New Review Article published in Multisensory Research

E-mail Print PDF

New Research published in Scientific Reports and Cognition!

Double achievement for Michele and David! Congratulations to Roberto and Marco, too!

Fornaciai, M., Arrighi, R. & Burr, D. C. (2016). Adaptation-Induced Compression of Event Time Occurs Only for Translational Motion, Scientific Reports, (6), 23341. PDF

Adaptation to fast motion reduces the perceived duration of stimuli displayed at the same location as the adapting stimuli. Here we show that the adaptation-induced compression of time is specific for translational motion. Adaptation to complex motion, either circular or radial, did not affect perceived duration of subsequently viewed stimuli. Adaptation with multiple patches of translating motion caused compression of duration only when the motion of all patches was in the same direction. These results show that adaptation-induced compression of event-time occurs only for uni-directional translational motion, ruling out the possibility that the neural mechanisms of the adaptation occur at early levels of visual processing.


Fornaciai, M., Cicchini, G. M. & Burr, D. C. (2016). Adaptation to number operates on perceived rather than physical numerosity, Cognition, (151), 63-67. PDF

Humans share with many animals a number sense, the ability to estimate rapidly the approximate number of items in a scene. Recent work has shown that like many other perceptual attributes, numerosity is susceptible to adaptation. It is not clear, however, whether adaptation works directly on mechanisms selective to numerosity, or via related mechanisms, such as those tuned to texture density. To disentangle this issue we measured adaptation of numerosity of 10 pairs of connected dots, as connecting dots makes them appear to be less numerous than unconnected dots. Adaptation to a 20-dot pattern (same number of dots as the test) caused robust reduction in apparent numerosity of the connected-dot pattern, but not of the unconnected dot-pattern. This suggests that adaptation to numerosity, at least for relatively sparse dot-pattern, occurs at neural levels encoding perceived numerosity, rather than at lower levels responding to the number of elements in the scene.


You are here: Home