PisaVisionLab

  • Full Screen
  • Wide Screen
  • Narrow Screen
  • Increase font size
  • Default font size
  • Decrease font size

Join Us on Facebook

New Research

It has been a productive autumn for sure! Congratulations to Concetta, Sofia, Michele, Paola, Giovanni, Marco and David!


Biagi, L., Crespi, S. A., Tosetti, M. & Morrone, M. C. (2015). BOLD Response Selective to Flow-Motion in Very Young Infants, PLoS Biol, 9 (13), e1002260. PDF

In adults, motion perception is mediated by an extensive network of occipital, parietal, temporal, and insular cortical areas. Little is known about the neural substrate of visual motion in infants, although behavioural studies suggest that motion perception is rudimentary at birth and matures steadily over the first few years. Here, by measuring Blood Oxygenated Level Dependent (BOLD) responses to flow versus random-motion stimuli, we demonstrate that the major cortical areas serving motion processing in adults are operative by 7 wk of age. Resting-state correlations demonstrate adult-like functional connectivity between the motion-selective associative areas, but not between primary cortex and temporo-occipital and posterior-insular cortices. Taken together, the results suggest that the development of motion perception may be limited by slow maturation of the subcortical input and of the cortico-cortical connections. In addition they support the existence of independent input to primary (V1) and temporo-occipital (V5/MT+) cortices very early in life.


Fornaciai, M. & Binda, P. (2015). Effect of saccade automaticity on perisaccadic space compression, Front Syst Neurosci, (9), 127. PDF

Briefly presented stimuli occurring just before or during a saccadic eye movement are mislocalized, leading to a compression of visual space toward the target of the saccade. In most cases this has been measured in subjects over-trained to perform a stereotyped and unnatural task where saccades are repeatedly driven to the same location, marked by a highly salient abrupt onset. Here, we asked to what extent the pattern of perisaccadic mislocalization depends on this specific context. We addressed this question by studying perisaccadic localization in a set of participants with no prior experience in eye-movement research, measuring localization performance as they practiced the saccade task. Localization was marginally affected by practice over the course of the experiment and it was indistinguishable from the performance of expert observers. The mislocalization also remained similar when the expert observers were tested in a condition leading to less stereotypical saccadic behavior-with no abrupt onset marking the saccade target location. These results indicate that perisaccadic compression is a robust behavior, insensitive to the specific paradigm used to drive saccades and to the level of practice with the saccade task.

Anobile, G., Cicchini, G. M. & Burr, D. C. (2015). Number as a primary perceptual attribute: a review, Perception 1-27 DOI: 10.1177/0301006615602599. PDF

Although humans are the only species to possess language-driven abstract mathematical capacities, we share with many other animals a nonverbal capacity for estimating quantities or numerosity. For some time, researchers have clearly differentiated between small numbers of items—less than about four—referred to as the subitizing  range, and larger numbers, where counting or estimation is required. In this review, we examine more recent evidence suggesting a further division, between sets of items greater than the subitizing range, but sparse enough to be individuated as single items; and densely packed stimuli, where they crowd each other into what is betterconsidered as a texture. These two different regimes are psychophysically discriminable in that they follow distinct psychophysical laws and show different dependencies on eccentricity and on luminance levels. But provided the elements are not too crowded (less than about two items per square degree in central vision, less in the periphery), there is little evidence that estimation of numerosity depends on mechanisms responsive to texture. The distinction is important, as the ability to discriminate numerosity, but not texture, correlates with formal maths skills.

New Research in Journal of Vision

Congratulations to Koulla, Marco and David whose latest paper has just been published in Journal of Vision!

Mikellidou, K., Cicchini, G. M., Thompson, P. G. & Burr, D. C. (2015). The oblique effect is both allocentric and egocentric, Journal of Vision, 8 (15), 24-24. PDF

Despite continuous movements of the head, humans maintain a stable representation of the visual world, which seems to remain always upright. The mechanisms behind this stability are largely unknown. To gain some insight on how head tilt affects visual perception, we investigate whether a well-known orientation-dependent visual phenomenon, the oblique effect—superior performance for stimuli at cardinal orientations (0° and 90°) compared with oblique orientations (45°)—is anchored in egocentric or allocentric coordinates. To this aim, we measured orientation discrimination thresholds at various orientations for different head positions both in body upright and in supine positions. We report that, in the body upright position, the oblique effect remains anchored in allocentric coordinates irrespective of head position. When lying supine, gravitational effects in the plane orthogonal to gravity are discounted. Under these conditions, the oblique effect was less marked than when upright, and anchored in egocentric coordinates. The results are well explained by a simple “compulsory fusion” model in which the head-based and the gravity-based signals are combined with different weightings (30% and 70%, respectively), even when this leads to reduced sensitivity in orientation discrimination.

New Research in The Journal of Neuroscience

Congratulations to G.Marco and Concetta whose latest paper has just been published in Journal of Neuroscience!

Cicchini, G. M., Marino, C., Mascheretti, S., Perani, D. & Morrone, M. C. (2015). Strong Motion Deficits in Dyslexia Associated with DCDC2 Gene Alteration, J Neurosci, 21 (35), 8059-8064. PDF

Dyslexia is a specific impairment in reading that affects 1 in 10 people. Previous studies have failed to isolate a single cause of the disorder, but several candidate genes have been reported. We measured motion perception in two groups of dyslexics, with and without a deletion within the DCDC2 gene, a risk gene for dyslexia. We found impairment for motion particularly strong at high spatial frequencies in the population carrying the deletion. The data suggest that deficits in motion processing occur in a specific genotype, rather than the entire dyslexia population, contributing to the large variability in impairment of motion thresholds in dyslexia reported in the literature.

New Research in Beahvior Research Methods

Congratulations to Koulla, Concetta and David whose latest paper has just been published in Behav Res Methods!

Greco, V., Frijia, F., Mikellidou, K., Montanaro, D., Farini, A., D'Uva, M., et al. (2015). A low-cost and versatile system for projecting wide-field visual stimuli within fMRI scanners, Behav Res Methods, PDF

We have constructed and tested a custom-made magnetic-imaging-compatible visual projection system designed to project on a very wide visual field (~80 degrees ). A standard projector was modified with a coupling lens, projecting images into the termination of an image fiber. The other termination of the fiber was placed in the 3-T scanner room with a projection lens, which projected the images relayed by the fiber onto a screen over the head coil, viewed by a participant wearing magnifying goggles. To validate the system, wide-field stimuli were presented in order to identify retinotopic visual areas. The results showed that this low-cost and versatile optical system may be a valuable tool to map visual areas in the brain that process peripheral receptive fields.

New Research in Current Biology

Congratulations to Claudia and Concetta whose latest paper has just been published in Current Biology!

Lunghi, C., Emir, U. E., Morrone, M. C. & Bridge, H. (2015). Short-Term Monocular Deprivation Alters GABA in the Adult Human Visual Cortex, Curr Biol, 11 (25), 1496-1501. PDF

Neuroplasticity is a fundamental property of the nervous system that is maximal early in life, within the critical period [1-3]. Resting GABAergic inhibition is necessary to trigger ocular dominance plasticity and to modulate the onset and offset of the critical period [4, 5]. GABAergic inhibition also plays a crucial role in neuroplasticity of adult animals: the balance between excitation and inhibition in the primary visual cortex (V1), measured at rest, modulates the susceptibility of ocular dominance to deprivation [6-10]. In adult humans, short-term monocular deprivation strongly modifies ocular balance, unexpectedly boosting the deprived eye, reflecting homeostatic plasticity [11, 12]. There is no direct evidence, however, to support resting GABAergic inhibition in homeostatic plasticity induced by visual deprivation. Here, we tested the hypothesis that GABAergic inhibition, measured at rest, is reduced by deprivation, as demonstrated by animal studies. GABA concentration in V1 of adult humans was measured using ultra-high-field 7T magnetic resonance spectroscopy before and after short-term monocular deprivation. After monocular deprivation, resting GABA concentration decreased in V1 but was unaltered in a control parietal area. Importantly, across participants, the decrease in GABA strongly correlated with the deprived eye perceptual boost measured by binocular rivalry. Furthermore, after deprivation, GABA concentration measured during monocular stimulation correlated with the deprived eye dominance. We suggest that reduction in resting GABAergic inhibition triggers homeostatic plasticity in adult human V1 after a brief period of abnormal visual experience. These results are potentially useful for developing new therapeutic strategies that could exploit the intrinsic residual plasticity of the adult human visual cortex.

New Research in PNAS

Congratulations to Marco T, David M, and David B whose latest paper has just been published in PNAS!

Turi, M., Burr, D. C., Igliozzi, R., Aagten-Murphy, D., Muratori, F. & Pellicano, E. (2015). Children with autism spectrum disorder show reduced adaptation to number, Proceedings of the National Academy of Sciences, PDF

Autism is known to be associated with major perceptual atypicalities. We have recently proposed a general model to account for these atypicalities in Bayesian terms, suggesting that autistic individuals underuse predictive information or priors. We tested this idea by measuring adaptation to numerosity stimuli in children diagnosed with autism spectrum disorder (ASD). After exposure to large numbers of items, stimuli with fewer items appear to be less numerous (and vice versa). We found that children with ASD adapted much less to numerosity than typically developing children, although their precision for numerosity discrimination was similar to that of the typical group. This result reinforces recent findings showing reduced adaptation to facial identity in ASD and goes on to show that reduced adaptation is not unique to faces (social stimuli with special significance in autism), but occurs more generally, for both parietal and temporal functions, probably reflecting inefficiencies in the adaptive interpretation of sensory signals. These results provide strong support for the Bayesian theories of autism.

Ass. Sante Malatesta Onlus

Support foreign student from developing countries

Visit our wesite, or download the depliant and the contact form of our Association

New Research in The Journal of Neuroscience

Congratulations to Alice, Donatella, Marco, Giulio and Concetta whose latest paper has just been published in The Journal of Neuroscience!

Tomassini, A., Spinelli, D., Jacono, M., Sandini, G. & Morrone, M. C. (2015). Rhythmic oscillations of visual contrast sensitivity synchronized with action,J Neurosci, 18 (35), 7019-7029. PDF

It is well known that the motor and the sensory systems structure sensory data collection and cooperate to achieve an efficient integration and exchange of information. Increasing evidence suggests that both motor and sensory functions are regulated by rhythmic processes reflecting alternating states of neuronal excitability, and these may be involved in mediating sensory-motor interactions. Here we show an oscillatory fluctuation in early visual processing time locked with the execution of voluntary action, and, crucially, even for visual stimuli irrelevant to the motor task. Human participants were asked to perform a reaching movement toward a display and judge the orientation of a Gabor patch, near contrast threshold, briefly presented at random times before and during the reaching movement. When the data are temporally aligned to the onset of movement, visual contrast sensitivity oscillates with periodicity within the theta band. Importantly, the oscillations emerge during the motor planning stage, approximately 500 ms before movement onset. We suggest that brain oscillatory dynamics may mediate an automatic coupling between early motor planning and early visual processing, possibly instrumental in linking and closing up the visual-motor control loop.


The XVI Congress for the Italian Society for Neuroscience - Cagliari on October 8th -11th, 2015.
SINS will award 100 grants to pre-doctoral and post-doctoral SINS members to attend and present their data at the SINS Congress 2015

Page 3 of 8

You are here: Home