Rucci, M., Ahissar, E. & Burr, D. (2018).

Temporal Coding of Visual Space, Trends in Cognitive Sciences, 10 (22), 883-895.

Establishing a representation of space is a major goal of sensory systems. Spatial information, however, is not always explicit in the incoming sensory signals. In most modalities it needs to be actively extracted from cues embedded in the temporal flow of receptor activation. Vision, on the other hand, starts with a sophisticated optical imaging system that explicitly preserves spatial information on the retina. This may lead to the assumption that vision is predominantly a spatial process: all that is needed is to transmit the retinal image to the cortex, like uploading a digital photograph, to establish a spatial map of the world. However, this deceptively simple analogy is inconsistent with theoretical models and experiments that study visual processing in the context of normal motor behavior. We argue here that, as with other senses, vision relies heavily on temporal strategies and temporal neural codes to extract and represent spatial information.