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Optimal Multimodal Integration in Spatial Localization
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Saccadic eye movements facilitate rapid and efficient exploration of visual scenes, but also pose serious challenges to establishing reliable
spatial representations. This process presumably depends on extraretinal information about eye position, but it is still unclear whether
afferent or efferent signals are implicated and how these signals are combined with the visual input. Using a novel gaze-contingent search
paradigm with highly controlled retinal stimulation, we examined the performance of human observers in locating a previously fixated
target after a variable number of saccades, a task that generates contrasting predictions for different updating mechanisms. We show that
while localization accuracy is unaffected by saccades, localization precision deteriorates nonlinearly, revealing a statistically optimal
combination of retinal and extraretinal signals. These results provide direct evidence for optimal multimodal integration in the updating
of spatial representations and elucidate the contributions of corollary discharge signals and eye proprioception.

Introduction
How do we keep track of the locations of objects in a scene?
Imagine looking for a specific book in a bookcase. While going
through the shelves, you see another potentially interesting book,
but keep looking for the desired one until realizing that it is not
there. Then, you confidently look back to reach the book you
previously spotted. Although for most people this is an effortless
operation, it requires complex computations. The projections of
stationary objects shift on the retina every time a saccade occurs,
and many visual functions progressively decline with eccentric-
ity, making localization of non-fixated objects difficult and often
impossible. Thus, spatial localization cannot rely solely on the
image currently present on the retina, but needs to be based on a
stable internal representation of the scene.

The retinal image is not the only source of spatial information.
Important contributions to the updating of spatial representa-
tions come from efferent oculomotor signals (von Helmholtz,
1925) (known as corollary discharges; Sperry, 1950), as revealed
by experiments in which stimuli are displayed immediately be-
fore or during saccades (Hallett and Ligthstone, 1976; Wurtz,
2008). It has long been argued that another extraretinal signal,
extraocular muscle proprioception, may also play a key role
(Sherrington, 1918). However, experimental evidence on the
function of eye proprioception has remained controversial (Don-
aldson, 2000), leading to the idea that this signal is primarily used
for oculomotor calibration and learning rather than for spatial
representation (Lewis et al., 2001). Furthermore, it is unclear how

retinal and extraretinal signals are combined to yield the stable
and unified representation of space that is necessary for accu-
rately localizing objects across saccades.

Theoretically, the updating of spatial representations could
rely on a single source, such as the corollary discharge. However,
a more robust and effective strategy would be to use information
from all the available sources. In tasks in which multiple sensory
cues are available, human observers often follow a strategy of cue
integration similar to maximum likelihood (Ernst and Bülthoff,
2004; Knill and Pouget, 2004), an approach that minimizes the
variance of the resulting perceptual estimate (Clark and Yuille,
1990). As exemplified in Figure 1, a similar strategy could in
principle be used in spatial localization to optimally combine
location estimates obtained in different modalities.

To distinguish among different possible mechanisms of
spatial updating, we developed a new procedure of gaze-
contingent display, which allowed us to test spatial localiza-
tion after a variable number of spontaneous, unconstrained
saccades. In this task, different mechanisms yield different
predictions. If spatial representations are updated solely on
the basis of the efferent corollary discharge (effectively a form
of “dead reckoning”), each saccade would contribute its own
error, so the variance of the localization error should increase
with the number of saccades performed after fixation on a
given target. On the other hand, if the updating process relies
only on the retinal image and/or extraocular muscle proprio-
ception, localization precision should not depend on the num-
ber of previous saccades. The statistically optimal integration
of all the available sources gives yet a different scenario: it
predicts the variance of the localization error to increase with
the first few saccades following target fixation and then satu-
rate, as the contribution of the corollary discharge progres-
sively looses reliability and is eventually no longer considered.
We show that localization of a previously fixated target is well
predicted by the statistically optimal integration of retinal,
efferent, and afferent signals.
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Materials and Methods
Subjects. Four emmetropic subjects (two males
and two females), all naïve about the purpose
of the study, participated in the experiments.
All four took part in Experiment 1, and three of
them participated in Experiments 2 and 3. In-
formed consent was obtained from all partici-
pants following the procedures approved by
the Boston University Charles River Campus
Institutional Review Board.

Apparatus. Horizontal and vertical eye posi-
tions were sampled at 1 kHz with a Generation
6 DPI eye tracker (Fourward Technologies)
and recorded for subsequent analysis. A dental-
imprint bite bar and a head-rest kept subjects at a
fixed distance from the monitor (126 cm) and
prevented head movements. Stimuli were
observed monocularly with the right eye,
while the left eye was patched. They were dis-
played on a fast-phosphor CRT monitor
(Iiyama HM204DT) with a vertical refresh rate
of 200 Hz and spatial resolution of 800 � 600
pixels. Stimuli were rendered and modified in
real time by means of EyeRIS (Santini et al.,
2007), a system for gaze-contingent display that
enables precise synchronization between eye
movements data and the refresh of the image on
the monitor, as well as accurate spatial localiza-
tion of the line of sight. Gaze-contingent proce-
dures were implemented by custom-developed
software based on OpenGL and real-time C�� routines running in parallel
on the host CPU and on EyeRIS’ digital signal processor, respectively.

Stimuli and procedure. Data were collected in separate experimental
sessions. Every session started with preliminary setup operations that
lasted a few minutes and included positioning the subject optimally and
comfortably in the apparatus, tuning the eye tracker, and calibrating
EyeRIS to accurately convert the eye position measurements given by the
eyetracker into screen coordinates. Subjects were never constrained in
the experimental setup for �15 min consecutively.

Accurate localization of the line of sight is important in this study. To this
end, before each recording session, we conducted a gaze-contingent calibra-
tion, which provides more accurate localization than the standard procedure
used in oculomotor research (Poletti et al., 2010). This calibration consisted
of two phases. In the first phase, average eye positions were measured as
subjects sequentially fixated on each of the dots of a three-by-three grid, as is
customary in eye-tracking experiments. The initial mapping from eye posi-
tion coordinates to degrees of visual angle was determined by bilinear inter-
polation over the mean eye positions measured at these nine points. In the
second phase of the calibration procedure, subjects refined this gaze-to-pixel
mapping. They fixated again on each of the points of the grid and, at each
point, corrected the estimated location of the center of gaze, which was
displayed in real time on the monitor as a retinally-stabilized red cross. Sub-
jects used dedicated controls on the EyeRIS joypad to move the cross on the
horizontal and vertical axes until it matched their perceived fixation location.
These refinements were then incorporated into the offsets and gains of the
bilinear interpolation. This method improved localization of the line of sight
by approximately a factor of three on each axis.

Experiments were conducted in complete darkness, and special care
was taken in ensuring the absence of spurious light sources. The monitor
was set to minimum contrast and brightness settings, and stimuli were
displayed for brief periods (50 ms) at low luminance (0.6 cd m �2), con-
ditions that excluded influences from phosphor persistence, as demon-
strated in previous experiments (Poletti et al., 2010). Furthermore, to
prevent dark adaptation, each trial ended with the presentation of a white
noise mask at maximum intensity, and subjects took frequent breaks
during which the room was illuminated normally.

Observers were instructed to search for two small (20� radius) red
circles, which, they were told, were hidden behind the black background,

but would briefly appear when fixated. Their task was to report the loca-
tion of the first object (the target) upon finding the second one (the
response cue). In reality, each circle was displayed during a selected fix-
ation, with the two fixations separated by a predetermined number of
saccades (1–5, 9, or 10), which varied pseudorandomly across trials. Both
circles were displayed at the center of gaze at fixation onset. In Experi-
ments 1 (see Fig. 4) and 3 (see Fig. 7), subjects used a joystick to position
a 5� cross initially displayed at the response cue location. These two
experiments differed only for the presence or absence of a visual refer-
ence, a stationary 5� white dot at maximum contrast. In Experiment 2
(see Fig. 6), subjects pressed a button when fixating on the remembered
target location.

Data analysis. Recorded eye-movement traces were segmented into
separate periods of fixations and saccades on the basis of the velocity of
the trajectory. Eye movements with minimal amplitude of 3� and peak
speed higher than 3°/s were selected as possible saccades. Consecutive
events closer than 15 ms were then merged together, a method that
automatically excluded possible postsaccadic artifacts. Saccade ampli-
tude was defined as the modulus of the vector connecting the two loca-
tions at which eye speed became greater (saccade onset) and lower
(saccade offset) than 3°/s. Trials in which eye tracking was not continu-
ous were discarded. For each trial, we measured the localization error,
i.e., the vector difference between the estimated and real positions of the
target (see Fig. 4a). For each subject, trials with the same numbers of
intervening saccades were pooled together, and the variability of local-
ization error was quantified by means of its dispersion area, defined as the
area of the 68th percentile confidence ellipse (Steinman, 1965). This
quantity has been used extensively in the literature; since it estimates the
area within 1 SD from the mean, it can be regarded as the extension of the
concept of variance to two dimensions. For every subject, dispersion
areas were estimated over an average of 64 trials for each considered
number of intervening saccades. Since for each individual subject all the
trials with the same saccades number were collapsed into one single
measurement of the dispersion area, the variability of this estimate and
within subject statistical comparisons were determined by means of
bootstrap (see Figs. 4 –7, error bars).

Bootstrap was also used to determine whether measurements after 9
and 10 saccades differed from the predictions of the standard corollary
discharge model of error accumulation. At each bootstrap iteration k, we

Figure 1. An example of biologically plausible integration of efferent, afferent, and retinal signals. a, While looking at object A
(red triangle, right), an observer plans a saccade toward object B (blue square), which was at the center of gaze at fixation 0, n
saccades before (left). b, Likelihoods of independent estimates of object B’s location in retinotopic coordinates. The afferent
estimate, L̂A, is proportional to the difference between the current eye position, eN, and the position e0 assumed by the eye during
fixation on B. The efferent estimate, L̂E, is proportional to the sum of all the saccades, sk, which intervened between the two
fixations. The retinal estimate, L̂R, is determined by the position of object B on the retinal image. These three estimates can be
combined to maximize the likelihood of localization. FA and FE represent mappings into retinotopic coordinates. This scheme is
meant to provide an intuitive example of how independent estimates can be obtained and integrated in spatial localization.
Several other plausible implementations of this strategy that do not necessary rely on retinotopic representations are conceivable.
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first obtained an estimate of the dispersion area of each subject, Dk(n), by
random sampling with replacement from all of the n saccade trials (n �
1–3) available for the considered subject. We then used the bootstrapped
areas from all subjects to estimate, by means of least-squares interpola-
tion, the areas Ek(n) predicted by a purely efferent mechanism of spatial
updating. Under the assumption of independence of the localization
error introduced by each saccade, the corollary discharge model predicts
that each saccade enlarges the dispersion area by a fixed amount:

E�n� 	 �O
2 � n�E

2, (1)

where �O
2 is an error associated with the reporting method (in Experi-

ment 1, placing a cursor on the display), and �E is the corollary discharge
error. This method enabled estimation of the distributions of the corol-
lary discharge predictions at n � 9 and 10 saccades, which were com-
pared with the dispersion areas measured experimentally by means of
two-sample two-tailed t tests. The method was first tested by means of
simulations with random data extracted from various distributions,
which confirmed the validity of the test and the correctness of the result-
ing levels of significance.

Since, as shown by our data, the dispersion area increases at a progres-
sively lower rate with saccades, estimation of the corollary discharge
model by linear regression of the dispersion areas measured after n � 1–3
saccades actually underestimates the error predicted by a mechanism of
spatial updating entirely based on corollary discharge. Results did not
change if the corollary discharge model was estimated over the first four
saccades, rather than the just the first three. These two numbers of sac-
cades, three and four, have been used previously in the literature to
measure the influence of extraretinal signals in multiple-step saccade
tasks (Bock et al., 1995; Collins, 2010).

The ideal observer curves shown in Figures 4 –7 were obtained by
least-squares fitting the optimal integration model to the data. This
model assumes that the localization error is isotropic and normally dis-
tributed. It has three parameters: the SDs of the efferent (�E, after one
saccade), afferent (�A), and retinal signals (�R). After n saccades, the
model predicts that the localization error will have variance �M

2 (n):

�M
2 �n� � �E

2�n� n�E
2 � �A

2 �n� �A
2 � �R

2 �n��R
2 , (2)

where

�E �
1/�n�E

2�

1/�n�E
2� � 1/�A

2 � 1/�R
2 , (3)

�A �
1/�A

2

1/�n�E
2� � 1/�A

2 � 1/�R
2 , (4)

�R �
1/�R

2

1/�n�E
2� � 1/�A

2 � 1/�R
2 . (5)

The predicted dispersion area, the area of the 68th percentile confidence
circle, is given by A(n) � 2� log[(1 � 0.68) �1] �M

2 (n). The assumption of
radial symmetry is supported by the data in Figure 4, but the model can
be easily extended to eliminate this assumption. In complete darkness
(Experiment 1 and 2), �R was set to infinity, and only �A and �E were
estimated. Identification of these two parameters is possible because the
afferent signal gives a constant localization error independent of the
number of saccades, whereas the localization error given by the efferent
signal increases with the number of saccades. In the presence of a visual
reference, �R was also estimated. In this case, the model cannot distin-
guish between �R and �A, as both terms give a constant localization error
across saccades, and we therefore set �A to the value estimated previously
in Experiment 1.

The optimal integration model was also compared to the corollary
discharge linear model that best interpolated all of the available data
points (n � 1–5, 9, and 10 saccades). Different models were compared by
means of a corrected version of the Akaike information criterion (AIC;
Akaike, 1974; Hurvich and Tsai, 1989). This criterion determines which
model among those compared is more likely to be closer to the true

model in the sense of minimizing Kullback–Leibler discrepancy. 
AICC

values reported in the text are averages across subjects.
Our corollary discharge model in Equation 1 assumes that the local-

ization error increases linearly with the number of saccades. However,
the predictions of a purely efferent mechanism of spatial updating may
deviate from linearity because of two factors: (1) lack of independence in
the errors introduced by separate saccades and (2) the finite size of the
display. If correlations between successive saccades exist, inaccuracies in
the corollary discharge could yield correlations in the localization errors
given by separate saccades. In this case, the dispersion area would in-
crease nonlinearly with rate determined by the extent of the correlation.
Furthermore, in Experiment 1, subjects could report the position of the
target by moving the cursor only up to the edges of the monitor. This
limitation in the working area implies that the reported dispersion area
cannot grow larger than the surface of the monitor. For this reason, even
a perfect corollary discharge mechanism of spatial updating— one in
which the internal copy of the saccade is veridical—would eventually
deviate from linearity and saturate.

To examine the impact of both factors, for each subject, we conducted
Monte Carlo simulations of the individual experimental trials. These
simulations estimated the error distribution that may be expected from a
linear model of the corollary discharge, given the sequences of saccades
performed by the subject in the experiments. We assumed that, on each
Cartesian axis k, the internal representation of the saccade displacement
Ŝk was linearly related to the actual saccade shift, Sk: Ŝk � �kSk � �k � �k,
where �k is a random error with normal distribution N(0, �k). For each
individual subject, �k and �k were estimated on the basis of the localiza-
tion errors measured in the one-saccade trials, em � (e1,m, e2,m), by linear
regression of the points (ek,m, Sk,m), where Sk,m represents the kth com-
ponent (k � 1, 2) of the saccade performed in the mth trial. The remain-
ing parameter �k and a possible offset at zero saccades, ok, representing
the variability associated with the reporting method (the process of plac-
ing the cursor on the display) were estimated by optimally fitting, in the
least-squares sense, the SDs of the localization errors measured on the
corresponding axis after one to three saccades.

In the Monte Carlo simulations, for each experimental trial (i.e., the
combination of target position and recorded saccade sequence), we com-
puted the distribution of the estimated target location resulting from this
model and compared it to the experimental data. To take into account
the effect of the monitor size, estimated positions outside of the display
boundaries were adjusted by taking the closest point on the monitor
edges. The results of these simulations are given in Figure 5. They show
that correlations across saccades had little effect on the predictions of a
corollary discharge model, even when combined with the bounding ef-
fect of the limited working area of the display. The data in Figure 5 were
obtained by fitting the corollary discharge model in a coordinate system
aligned with the saccade (as in Fig. 4b). Very similar results were obtained
by fitting the model in the original reference system (as in Fig. 4a).

Results
Observers were instructed to search for two small circles, which,
they were told, were hidden behind the black background but
would briefly appear when fixated. Their task was to report the
location of the first object (the target) upon finding the second
one, either by placing a cursor (Experiment 1) or by looking back
at its remembered location (Experiment 2). In reality, the two
circles were displayed sequentially at the center of gaze, each dur-
ing a separate fixation (Fig. 2a). By presenting visual stimuli at
different locations in space but at the same position on the ob-
server’s retina, this procedure always resulted in the same retinal
stimulation independent of the eye movements performed by the
observer.

We first examined performance in total darkness, a condition
in which spatial localization can only occur on the basis of effer-
ent and/or afferent signals. These two mechanisms yield different
predictions: if spatial representations are updated from the effer-
ent corollary discharge, each saccade will contribute its own in-
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dependent error, so the variance of the localization error should
increase linearly with the number of saccades performed after
exposure to the target (Fig. 2b). On the other hand, an afferent
signal from eye proprioception should be independent of the
number of intervening saccades, so, apart from a possible mem-
ory decay with time, the resulting variance should remain con-
stant (Fig. 2c).

Both strategies are, however, suboptimal. Use of the corollary
discharge may work well for a recently fixated target, but after
many saccades, the error will eventually become unacceptably
large. In contrast, an estimate based on extraocular propriocep-
tion may be relatively imprecise (Donaldson, 2000), but will out-
perform the corollary discharge after a sufficient number of
saccades. The probabilistically optimal strategy is to combine
both signals based on their precision (Fig. 2d), an approach that
yields consistent estimates with minimum variance (Clark and
Yuille, 1990; Ernst and Bülthoff, 2004; Knill and Pouget, 2004).
This strategy predicts that the variance of the localization error
will increase almost linearly with the first few saccades, as it ini-
tially relies heavily on the more precise efferent signal, and then
progressively saturate as more weight is allocated to the afferent
signal (Fig. 2e).

Even though observers were asked to search in complete dark-
ness, sequences of saccades were very similar to those measured
when the same task was conducted in the presence of a visual
reference and, as shown in Figure 3, also similar to those occur-
ring during free viewing of pictures of natural scenes.

Interestingly, localization accuracy was little affected by sac-
cades (Fig. 4a,b). For all subjects, on both the horizontal and

vertical axes, the mean localization error after 10 saccades was
very close to zero (averages across observers, x-axis, 0.14 � 0.97°;
p � 0.79; y-axis, �0.03 � 0.39°) and statistically indistinguish-
able from the error measured after just one saccade (p � 0.43,
paired two-tailed t test). However, the variability of the estimated
location increased with saccades so that, for all subjects and on
both Cartesian axes, variances after 10 saccades were significantly
larger than those measured after just one saccade (p � 0.002,
two-tailed F test of equality of variances). Thus, spatial localiza-
tion remained accurate on average, but lost precision as the num-
ber of saccades increased.

We quantified the precision of localization after a given num-
ber of intervening saccades by the dispersion area, defined as the
area of the 68th percentile confidence ellipse (the direct extension
of the variance to two dimensions; Steinman, 1965). With only a
few saccades, the dispersion area appeared to increase almost
linearly, a finding that, without additional data points, could have
been easily mistaken as evidence for a corollary discharge mech-
anism of spatial updating. However, it deviated from linearity
with additional saccades (Fig. 4c; see Fig. 5 for individual subject
data). In all subjects, the increment in variability occurring with
the first five saccades (13.8 � 1.7 deg 2) was significantly larger
than the change caused by the following five saccades (6.8 � 2.3
deg 2; p � 0.05, paired two-tailed t test). As a consequence, the
dispersion areas after 9 and 10 saccades were significantly smaller
than the predictions of the standard corollary discharge model of
error accumulation based on the rate of error increment with the
first three saccades (p � 0.001, two-tailed t test). This deviation
from the prediction of constantly increasing variance cannot be

Figure 2. Experimental procedure and theoretical predictions. a, Two 20� radius circles, the target and the response cue, were sequentially displayed at the center of gaze after n saccades (s1 �
sn). Observers were asked to search for the two cues and report the remembered location of the target upon appearance of the response cue, either by placing a cursor (Experiment 1, visual
localization) or by looking back (Experiment 2, oculomotor localization). The spatial positions of both the target and the response cue (XT and XR) varied across trials depending on the subject’s eye
movements. b– d, Predicted precision of different localization strategies. The variance of the localization error is expected to increase proportionally to the number of saccades between the target
and the cue with a purely efferent mechanism of spatial updating (b), and to remain constant with a purely afferent one (c). d, e, The optimal integration method is to combine both sources, each
weighted inversely to its variance (� 2

k). d, This strategy predicts that the localization error will first increase almost linearly and then saturate as saccades occur, since (e) weights are progressively
reallocated from the corollary discharge (�E) to eye proprioception (�A). L̂E, L̂A, and L̂O represent location estimates in a gaze-centered frame of reference.
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ascribed to differences in scan path for different numbers of sac-
cades. The screen area covered by three saccades was, on average,
56 � 5 deg 2, compared with 52 � 8 deg 2 for nine saccades.
Similarly, there was no difference in the average distance between
the target and the response cue, on average 4.9 � 0.8° and 4.1 �
0.6° after three and nine saccades, respectively. These results are
not compatible with the widely held assumption that spatial rep-
resentations are updated exclusively on the basis of the corollary
discharge.

As shown in Figure 4b, the data closely followed the predic-
tions of a strategy of optimal integration of both afferent and
efferent signals. The relationship of dispersion area to saccade
number was best fit (least-squares) by a maximum likelihood
model in which the SD of the corollary discharge (�E, the vari-
ability after one saccade) was approximately half the SD �A of the
proprioceptive signal (mean across subjects, �E � 1.31 � 0.13°,
�A � 2.44 � 0.79°). This model explained almost all the variance
of the data (adjusted R 2 � 0.95 � 0.03) and provided a much
better fit than the best (least-squares) discharge model of error
accumulation estimated on the dispersion areas measured with
the first three saccades, a model that yielded a negative coefficient
of determination. The optimal integration model was also, on
average, 801 times more likely to be close to the true model, in the
sense of minimizing the Kullback–Leibler distance, than the stan-
dard corollary discharge model used in the literature, the best-
fitting first-order linear model of all measured dispersion areas
(mean 
AICC, 11.36 � 3.58). This latter model explained a
smaller amount of variance (adjusted R 2 � 0.73 � 0.18) and
predicted an error with no saccades (8.53 � 1.57 deg 2) that was
implausibly as large as the error after one saccade.

According to the optimal integration model, eye propriocep-
tion contributed 20% after one single saccade, a value similar to

the estimates obtained at fixation by previous studies (Gauthier et
al., 1990; Bridgeman and Stark, 1991). However, the contribution
of proprioception increased with saccades so that this signal
quickly became the predominant source of information (Fig. 4d).

These findings cannot be explained by possible memory de-
cays, which would only further increase localization errors in the
trials with larger numbers of saccades: regardless of possible
memory contributions, subjects were far more precise than
expected in these trials. Results were also not influenced by
factors that could make the predictions of a purely efferent
model of spatial updating deviate from linearity, such as pos-
sible correlations in saccade directions and the limited area of
the display (Fig. 5).

If saccades within a trial are correlated, systematic inaccura-
cies in the efferent signals would cause statistical dependencies in
the localization errors resulting from separate saccades. In this
case, the model of Equation 1 no longer holds, and the predicted
dispersion area would increase nonlinearly with saccades. Fur-
thermore, limitations in the working area of the display—i.e., the
fact that subjects could report the position of the target by mov-
ing the cursor only up to the edges of the monitor—imply that
the dispersion area cannot grow larger than the surface of the
monitor, so that even a perfect corollary discharge mechanism of
spatial updating will eventually deviate from linearity and satu-
rate. These effects, however, did not alter our conclusions, as
demonstrated by the results of dedicated Monte Carlo simula-
tions in Figure 5. The estimated dispersion areas at 9 and 10
saccades differed significantly from the predictions of a corollary
discharge model of spatial localization even when (a) this model
was individually fit for each subject, (b) it was applied to the
sequences of eye movements recorded in the experiments, and

Figure 3. Characteristics of eye movements. Probability distributions of fixation durations (top) and saccade amplitudes (bottom) in the absence (left; data from Experiments 1 and 2 combined)
and presence (center) of a visual reference. For comparison, fixation durations and saccade amplitudes measured during normal examination of a scene are also shown (right). In this condition, the
same observers freely viewed pictures of natural scenes, each presented for 10 s. Data from all subjects were pooled together. The red line and number in each panel represent the mean of the
distribution.
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(c) localization errors were corrected to take into account the
finite size of the display (see Materials and Methods).

Furthermore, very similar results were also obtained when
observers reported the target location by looking back at the re-
membered position rather than by placing a cursor (Experiment
2; Fig. 6), a condition in which the finite size of the monitor was
not an issue. These results reveal that the information provided
by extraocular muscle proprioception is taken into account in
evaluating the location of a previously fixated target and that the

contributions of afferent and efferent signals are weighted in a
way that conforms to the rules of optimal cue integration.

The results of Figures 4 – 6 were obtained in complete dark-
ness. To determine whether a scheme of optimal cue integration
continues to hold in the presence of visual landmarks, we re-
peated Experiment 1 while maintaining a single visual reference
(a 5� dot) fixed at the center of the display for the entire duration
of the trial (Experiment 3). In this way, the target and the refer-
ence were simultaneously visible, and the task could in principle

Figure 4. Visual localization (Experiment 1). a, Summary of all trials. Each dot represents the localization error in an individual trial. Different panels show trials with different numbers of saccades
between the target and the response cue. The mean error (red dot) and the 95% confidence ellipse are shown in each panel together with the marginal probability distributions and their best
Gaussian fits, �(	, �) (red curves). Data from all subjects (N � 4) were pooled together. b, Same data as in a after rotating the axes to align the abscissa with the cue-target direction. c, Mean
dispersion area across subjects as a function of the number of saccades. Asterisks mark significant deviations ( p � 0.001, two-tailed paired t tests), from the predictions of a purely efferent estimate,
as given by the linear regression of the measurements obtained with the first three saccades (blue line). The black curve represents the least-squares fit of the ideal observer model. d, Optimal
weighting of afferent and efferent estimates. As the number of saccades increases, proprioception is weighted more strongly and eventually becomes the predominant source of information. Error
bars and shaded regions in c and d represent SEM.
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be accomplished just on the basis of the visual input, by remem-
bering the target’s location relative to the reference. Like propri-
oception, this retinal cue does not depend on the number of
saccades occurring after presentation of the target.

The visual reference greatly improved the precision of local-
ization (Fig. 7). For each individual subject, the dispersion area
was now smaller by a factor of 2 after 1 saccade (p � 0.05, paired
two-tailed t test) and by a factor of 4 after 10 saccades (p � 0.001;
confront with Fig. 4c). Yet, apart from this scale change, the shape of
the error function remained strikingly similar to that observed in
complete darkness. The localization error sharply increased with the
first three saccades and settled on a constant value after four sac-
cades, so that the dispersion areas measured after 9 and 10 saccades
were significantly different from those predicted by a linear model of
error accumulation based on the data points measured with the first
three (or four) saccades (p � 0.04; two-tailed t test).

As in complete darkness, experimental data followed closely
the predictions of an optimal cue integration strategy (Fig. 7a).
When efferent and afferent parameters were constrained to be
equal to those obtained in Experiment 1, the maximum likeli-
hood model that best fitted the data was 3316 times more likely to
be correct than the best-fitting corollary discharge model of error

accumulation (mean 
AICC, 15.44 � 2.55). Furthermore, when
both �E and �R were left free to vary, the optimal integration
model yielded an SD of the corollary discharge signal that was
very similar to that measured in the previous experiments (�E �
1.08 � 0.13°).

The transition from progressive loss of precision with the first
few intervening saccades to saturation with the following sac-
cades is incompatible with a mechanism of spatial updating that
relies on one single signal, but emerges naturally from the opti-
mal integration of multiple signals. Again, this transition cannot
be explained by memory influences. The number of saccades is
inevitably correlated with the duration of the trial, which may
lead to loss of precision due to memory restraints. However, any
memory-driven effects should result in increased variability for
larger numbers of saccades, whereas our results show that the rate
of increase in dispersion errors decreases with saccade number,
contrary to predictions from decay of memory traces. The opti-
mal integration model attributes the initial loss in precision to the
decline in reliability of the corollary discharge estimate, which is
as precise as the retinal signal after one single saccade (�R �
1.27 � 0.20°), but becomes less reliable as more saccades occur.
Interestingly, proprioception continued to be considered, and its
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Figure 5. Individual subject data. The dispersion areas measured in the experiments are compared to the predictions of a corollary discharge model of spatial localization adjusted to take into
account the finite size of the display and possible biases in the internal representation of saccades (blue line). The adjustment was obtained by means of Monte Carlo simulations of the individual
experimental trials, in which the distribution of possible target positions, bounded by the monitor edges, was estimated by applying an individually fitted corollary discharge model to the recorded
sequence of eye movements. Asterisks mark statistically significant differences between predicted and measured dispersion areas ( p � 0.02, two-tailed t test). For comparison, the prediction of the
corollary discharge model estimated on a random concatenation of saccades from different trials and without consideration of the monitor boundaries is also shown (dashed line). The least-squares
parameters of the optimal integration model are shown in each panel (�E and �A). Error bars indicate SEM.
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contribution grew from 10% after one saccade to 20% after
10 saccades (Fig. 7b). These data strongly support a scheme of
spatial updating based on the optimal integration of different
cues, each weighted by its current reliability.

Discussion
Stable spatial representation is essential for visual exploration,
motor control, and ultimately for survival. Therefore, the visual
system must have developed strategies to optimize the mainte-
nance of stable representations under evolutionary pressure. The
results of this study show that the accuracy and precision by
which human observers locate a previously fixated target closely

follow the predictions of the optimal integration of efferent, af-
ferent, and retinal signals. These findings are not compatible with
an updating mechanism based on a single signal, either the cor-
ollary discharge or the retinal input.

In this study, stimuli were modified in real time according to
the observer’s eye movements. This gaze-contingent procedure
provides a departure from the standard methods used to examine
the influence of saccades on spatial localization (Hallett and
Ligthstone, 1976). Traditional methods only allow analysis of the
effects of a few saccades, as their extensions to longer saccadic
sequences yield confounding factors in the interpretation of ex-
perimental data. For example, the extension of the dual-step sac-

Figure 6. Saccadic localization (Experiment 2). a, Mean dispersion area across subjects as a function of the number of saccades. Asterisks mark significant deviations ( p � 0.05, two-tailed paired
t tests) from the predictions of a purely efferent estimate, as given by the linear regression of the measurements obtained with the first three saccades (blue line). The black curve represents the
least-squares fit of the ideal observer model. b, Optimal weighting of afferent and efferent estimates. Symbols and graphic conventions are the same as in Figure 4.

Figure 7. Influence of a visual reference. a, Mean dispersion area across subjects as a function of the number of intervening saccades. The black curve represents the least-squares fit of the ideal
observer model that integrates afferent, efferent, and retinal signals with the optimal weight combination (b). Conditions were identical to those of Experiment 1, except for the presence of a 5� dot
at the center of the display throughout each trial. Symbols and graphic conventions are the same as in Figure 4.
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cade task to multiple saccades (Bock et al., 1995; Collins, 2010)
implies that both memory requirements (the number of loca-
tions the subject needs to remember) and visual input character-
istics (the stimulated retinal locations) change with the number
of saccades. Our approach circumvents these problems. In our
experiments, the memory load was equalized, as subjects only
needed to remember one spatial location, no matter how many
saccades performed. Furthermore, the spatiotemporal stimulus
on the retina was always the same, because all stimuli were dis-
played at the center of gaze. Since observers performed normal
exploratory saccades, our method also eliminated the possibility
of planning more than one saccade at the same time (McPeek et
al., 2000). To our knowledge, only one previous pioneering study
used a somewhat similar approach (Karn et al., 1997), but this
study only examined performance after two and five saccades,
making it impossible to determine whether localization precision
deteriorated in a linear or nonlinear fashion.

The mechanisms responsible for establishing and maintaining
stable representations during eye movements have been the sub-
ject of fierce unsolved controversy (Sherrington, 1918; von
Helmholtz, 1925; for reviews, see Medendorp, 2011; Tatler and
Land, 2011; Hamker et al., 2011). Our findings contribute to
reconciling two vast bodies of conflicting experimental observa-
tions. The first set of data consists of results often taken as evi-
dence that spatial representations are exclusively updated on the
basis of the corollary discharge. These observations include (a)
the retained capability of compensating for presaccadic ocular
displacements after deafferentiation of the extraocular muscles
(Guthrie et al., 1983), a procedure that is supposed to eliminate
eye proprioception; (b) the results of double- and multiple-step
saccades (Bock et al., 1995; Collins, 2010) and the corresponding
impairments measured after inactivation of neural pathways in-
volved in signaling corollary discharges (Sommer and Wurtz,
2002); and (c) the illusory motion experienced during passive eye
rotations (von Helmholtz, 1925) and ocular paralysis (Matin et
al., 1982). All of these observations are, however, fully compatible
with the optimal integration scheme proposed here, as they were
obtained by means of experimental paradigms that only required a
few saccades. As shown by our data, the optimal combination strat-
egy weights heavily the corollary discharge under these conditions.

In contrast with this literature, a second set of experimental
observations has provided support to a role for proprioception in
the updating of spatial representations. These results include ac-
curate localization of targets after very large numbers of saccades
(Skavenski and Steinman, 1970), correction for passive displace-
ment of the line of sight in darkness (Skavenski, 1972), as well as
the localization errors occurring after passive eye rotations (Gau-
thier et al., 1990; Bridgeman and Stark, 1991) or following alter-
ations of proprioceptive signals (Allin et al., 1996; Lennerstrand
et al., 1997; Balslev and Miall, 2008). These results are also well
explained by a model of optimal integration that uses eye propri-
oception, in addition to other signals, to localize objects in space.
In this regard, it is worth observing that the typical durations of
natural fixations are sufficiently long for proprioceptive signals to
reach the cortex (Xu et al., 2011). Even though stimuli were dis-
played very briefly in our experiments, the fixations in which
targets appeared were significantly longer than average, allowing
sufficient time for proprioception to contribute to the process of
spatial updating (Fig. 8).

Our finding that spatial localization follows the predictions of
an optimal integration strategy is consistent with previous results
(Niemeier et al., 2003; Munuera et al., 2009; Ziesche and Hamker,
2011) and adds to a considerable body of evidence showing that

humans tend to perform in a statistically optimal manner in tasks
where multiple cues are available (Ernst and Banks, 2002; Stocker
and Simoncelli, 2006; Freeman et al., 2010; Geisler, 2011). Several
independent signals convey information about the location of a
previously fixated object. These signals can be easily transformed
into a common coordinate system, such as saccadic vectors or
positions in retinotopic or head-centered coordinates. Unlike
many tasks, however, the relative precision of these estimates
depends not only on the characteristics of each individual signal,
but also on the observer’s recent behavior, i.e., on the sequence of
saccades performed. This important feature distinguishes a max-
imum likelihood model from previously proposed multimodal
models in spatial localization. Previous experiments that at-
tempted to quantify the relative contribution of afferent and ef-
ferent signals have yielded different outcomes (Gauthier et al.,
1990; Bridgeman and Stark, 1991; Li and Matin, 1992). Our study
shows that variable contributions are to be expected depending
on the cues available in each specific task and on the observer’s
oculomotor activity.

Interestingly, in our experiments with a visual reference, ob-
servers weighted the efferent signal by approximately the same
amount as the retinal signal, a finding that appears to contrast
with the general notion that the retinal input prevails over ex-
traretinal contributions (Matin et al., 1982). In these experi-
ments, subjects were presented with an isolated stationary dot for
the entire duration of the trial. A stationary dot provides, in prin-
ciple, an optimal reference for establishing spatial relationships,
but also differs greatly from the visually rich scenes that humans
normally encounter. Future studies will need to examine the con-
tribution of the retinal input with more natural stimulation and
test the specific prediction raised by our model that also this
signal is weighted according to its reliability.

Under natural viewing conditions, the need emerges to keep
track of multiple locations, each observed with one or more ded-
icated fixations. Our findings suggest that the visual system up-
dates the representation of each location on the basis of how
many saccades have occurred since the corresponding fixation.
There are various plausible ways in which this spatial updating
scheme may be implemented in neuronal populations. Several
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Figure 8. Fixation duration. Comparison between the mean duration of the fixations in
which the target was displayed (Target) and the mean duration of the other fixations in the
search task (Others). Values represent averages across subjects. Data from Experiments 1 and 2
were combined. *p � 0.047 (two-tailed paired t test).
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mechanisms have been proposed for statistically optimal combi-
nation of neural signals, with supporting evidence (Ma et al.,
2008; Fetsch et al., 2011). An interesting possibility, compatible
with current theories, is that the same populations of neurons
that convey each individual estimate also signal its reliability. For
example, the precision of the location estimated by the corollary
discharge could be inferred by the spread of activity in a popula-
tion of neurons with shifting receptive fields. If each remapping
operation causes an enlargement of the focus of activity, the
spread in the pattern of activity representing each target will be
proportional to number of elapsed saccades, therefore effectively
signaling the reliability of the estimate. A similar mechanism may
also occur in the other modalities. For example, in the presence of
a crowded scene, the activity of a visual map signaling the location
of a target may be more distributed, therefore implicitly signaling
a lower reliability of the cue. Further work is needed to elucidate
the neural mechanisms by which the visual system optimally
combines afferent, efferent, and retinal signals to efficiently local-
ize objects in space.

References
Akaike H (1974) A new look at the statistical model identification. IEEE

Trans Automat Control 19:716 –723. CrossRef
Allin F, Velay JL, Bouquerel A (1996) Shift in saccadic direction induced in

humans by proprioceptive manipulation: a comparison between memory-
guided and visually guided saccades. Exp Brain Res 110:473–481. Medline

Balslev D, Miall RC (2008) Eye position representation in human anterior
parietal cortex. J Neurosci 28:8968 – 8972. CrossRef Medline

Bock O, Goltz H, Bélanger S, Steinbach M (1995) On the role of extraretinal
signals for saccade generation. Exp Brain Res 104:349 –350. CrossRef
Medline

Bridgeman B, Stark L (1991) Ocular proprioception and efference copy in
registering visual direction. Vision Res 31:1903–1913. CrossRef Medline

Clark JJ, Yuille AL (1990) Data fusion for sensory information processing
systems. Boston: Kluwer.

Collins T (2010) Extraretinal signal metrics in multiple-saccade sequences.
J Vis 10(14):7 1–14. CrossRef Medline

Donaldson I (2000) The functions of the proprioceptors of the eye muscles.
Phil Trans R Soc Lond B Biol Sci 335:1685–1754. Medline

Ernst MO, Banks MS (2002) Humans integrate visual and haptic informa-
tion in a statistically optimal fashion. Nature 415:429 – 433. CrossRef
Medline

Ernst MO, Bülthoff HH (2004) Merging the senses into a robust percept.
Trends Cogn Sci 8:162–169. CrossRef Medline

Fetsch CR, Pouget A, DeAngelis GC, Angelaki DE (2011) Neural correlates
of reliability-based cue weighting during multisensory integration. Nat
Neurosci 15:146 –154. CrossRef Medline

Freeman TC, Champion RA, Warren PA (2010) A Bayesian model of per-
ceived head-centered velocity during smooth pursuit eye movement.
Curr Biol 20:757–762. CrossRef Medline

Gauthier GM, Nommay D, Vercher JL (1990) The role of ocular muscle
proprioception in visual localization of targets. Science 249:58 – 61.
CrossRef Medline

Geisler WS (2011) Contributions of ideal observer theory to vision research.
Vision Res 51:771–781. CrossRef Medline

Guthrie BL, Porter JD, Sparks DL (1983) Corollary discharge provides ac-
curate eye position information to the oculomotor system. Science 221:
1193–1195. CrossRef Medline

Hallett PE, Lightstone AD (1976) Saccadic eye movements towards stimuli
triggered by prior saccades. Vision Res 16:99 –106. CrossRef Medline

Hamker FH, Zirnsak M, Ziesche A, Lappe M (2011) Computational models
of spatial updating in peri-saccadic perception. Phil Trans R Soc Lond B
Biol Sci 366:554 –571. CrossRef

Hurvich CM, Tsai CL (1989) Regression and time series model selection in
small samples. Biometrika 76:297–307. CrossRef

Karn KS, Møller P, Hayhoe MM (1997) Reference frames in saccadic target-
ing. Exp Brain Res 115:267–282. CrossRef Medline

Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in
neural coding and computation. Trends Neurosci 27:712–719. CrossRef
Medline

Lennerstrand G, Tian S, Han Y (1997) Effects of eye muscle proprioceptive
activation on eye position in normal and exotropic subjects. Graefes Arch
Clin Exp Ophthalmol 235:63– 69. CrossRef Medline

Lewis RF, Zee DS, Hayman MR, Tamargo RJ (2001) Oculomotor function
in the rhesus monkey after deafferentation of the extraocular muscles.
Exp Brain Res 141:349 –358. CrossRef Medline

Li W, Matin L (1992) Visual direction is corrected by a hybrid extraretinal
eye position signal. Ann N Y Acad Sci 656:865– 867. CrossRef

Ma WJ, Beck JM, Pouget A (2008) Spiking networks for Bayesian inference
and choice. Curr Opin Neurobiol 18:217–222. CrossRef Medline

Matin L, Picoult E, Stevens JK, Edwards MW Jr, Young D, MacArthur R
(1982) Oculoparalytic illusion: Visual-field dependent spatial mislocal-
izations by humans partially paralyzed with curare. Science 216:198 –201.
CrossRef Medline

McPeek RM, Skavenski AA, Nakayama K (2000) Concurrent processing of
saccades in visual search. Vision Res 40:2499 –2516. CrossRef Medline

Medendorp WP (2011) Spatial constancy mechanisms in motor control.
Phil Trans R Soc Lond B Biol Sci 366:476 – 491. CrossRef

Munuera J, Morel P, Duhamel JR, Deneve S (2009) Optimal sensorimotor
control in eye movement sequences. J Neurosci 29:3026 –3035. CrossRef
Medline

Niemeier M, Crawford JD, Tweed DB (2003) Optimal transsaccadic inte-
gration explains distorted spatial perception. Nature 422:76 – 80.
CrossRef Medline

Poletti M, Listorti C, Rucci M (2010) Stability of the visual world during eye
drift. J Neurosci 30:11143–11150. CrossRef Medline

Santini F, Redner G, Iovin R, Rucci M (2007) EyeRIS: a general-purpose
system for eye movement contingent display control. Behav Res Methods
39:350 –364. CrossRef Medline

Sherrington CS (1918) Observation on the sensual role of the propriocep-
tive nerve supply of the extrinsic ocular muscles. Brain 41:332–343.
CrossRef

Skavenski AA (1972) Inflow as a source of extraretinal eye position infor-
mation. Vision Res 12:221–229. CrossRef Medline

Skavenski AA, Steinman RM (1970) Control of eye position in the dark.
Vision Res 10:193–203. CrossRef Medline

Sommer MA, Wurtz RH (2002) A pathway in primate brain for internal
monitoring of movements. Science 296:1480 –1482. CrossRef Medline

Sperry RW (1950) Neural basis of the spontaneous optokinetic response
produced by visual inversion. J Comp Physiol Psychol 43:482– 489.
CrossRef Medline

Steinman RM (1965) Effect of target size, luminance, and color on monoc-
ular fixation. J Opt Soc Am 55:1158 –1165. CrossRef

Stocker AA, Simoncelli EP (2006) Noise characteristics and prior expecta-
tions in human visual speed perception. Nat Neurosci 9:578 –585.
CrossRef Medline

Tatler BW, Land MF (2011) Vision and the representation of the surround-
ings in spatial memory. Phil Trans R Soc Lond B Biol Sci 366:596 – 610.
CrossRef

von Helmholtz H (1925) Treatise on physiological optics. New York: Dover.
Wurtz RH (2008) Neuronal mechanisms of visual stability. Vision Res 48:

2070 –2089. CrossRef Medline
Xu Y, Wang X, Peck C, Goldberg ME (2011) The time course of the tonic

oculomotor proprioceptive signal in area 3a of somatosensory cortex.
J Neurophysiol 106:71–77. CrossRef Medline

Ziesche A, Hamker FH (2011) A computational model for the influence of
corollary discharge and proprioception on the perisaccadic mislocaliza-
tion of briefly presented stimuli in complete darkness. J Neurosci 31:
17392–17405. CrossRef Medline

14268 • J. Neurosci., August 28, 2013 • 33(35):14259 –14268 Poletti et al. • Optimal Integration in Spatial Localization

http://dx.doi.org/10.1109/TAC.1974.1100705
http://www.ncbi.nlm.nih.gov/pubmed/8871106
http://dx.doi.org/10.1523/JNEUROSCI.1513-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18768690
http://dx.doi.org/10.1016/S0079-6123(08)61800-2
http://www.ncbi.nlm.nih.gov/pubmed/7672027
http://dx.doi.org/10.1016/0042-6989(91)90185-8
http://www.ncbi.nlm.nih.gov/pubmed/1771774
http://dx.doi.org/10.1167/10.14.7
http://www.ncbi.nlm.nih.gov/pubmed/21135254
http://www.ncbi.nlm.nih.gov/pubmed/11205338
http://dx.doi.org/10.1038/415429a
http://www.ncbi.nlm.nih.gov/pubmed/11807554
http://dx.doi.org/10.1016/j.tics.2004.02.002
http://www.ncbi.nlm.nih.gov/pubmed/15050512
http://dx.doi.org/10.1038/nn.2983
http://www.ncbi.nlm.nih.gov/pubmed/22101645
http://dx.doi.org/10.1016/j.cub.2010.02.059
http://www.ncbi.nlm.nih.gov/pubmed/20399096
http://dx.doi.org/10.1126/science.2367852
http://www.ncbi.nlm.nih.gov/pubmed/2367852
http://dx.doi.org/10.1016/j.visres.2010.09.027
http://www.ncbi.nlm.nih.gov/pubmed/20920517
http://dx.doi.org/10.1126/science.6612334
http://www.ncbi.nlm.nih.gov/pubmed/6612334
http://dx.doi.org/10.1016/0042-6989(76)90083-3
http://www.ncbi.nlm.nih.gov/pubmed/1258395
http://dx.doi.org/10.1098/rstb.2010.0229
http://dx.doi.org/10.1093/biomet/76.2.297
http://dx.doi.org/10.1007/PL00005696
http://www.ncbi.nlm.nih.gov/pubmed/9224855
http://dx.doi.org/10.1016/j.tins.2004.10.007
http://www.ncbi.nlm.nih.gov/pubmed/15541511
http://dx.doi.org/10.1007/BF00941731
http://www.ncbi.nlm.nih.gov/pubmed/9147952
http://dx.doi.org/10.1007/s002210100876
http://www.ncbi.nlm.nih.gov/pubmed/11715079
http://dx.doi.org/10.1111/j.1749-6632.1992.tb25277.x
http://dx.doi.org/10.1016/j.conb.2008.07.004
http://www.ncbi.nlm.nih.gov/pubmed/18678253
http://dx.doi.org/10.1126/science.7063881
http://www.ncbi.nlm.nih.gov/pubmed/7063881
http://dx.doi.org/10.1016/S0042-6989(00)00102-4
http://www.ncbi.nlm.nih.gov/pubmed/10915889
http://dx.doi.org/10.1098/rstb.2010.0089
http://dx.doi.org/10.1523/JNEUROSCI.1169-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19279239
http://dx.doi.org/10.1038/nature01439
http://www.ncbi.nlm.nih.gov/pubmed/12621435
http://dx.doi.org/10.1523/JNEUROSCI.1925-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20720121
http://dx.doi.org/10.3758/BF03193003
http://www.ncbi.nlm.nih.gov/pubmed/17958145
http://dx.doi.org/10.1093/brain/41.3-4.332
http://dx.doi.org/10.1016/0042-6989(72)90113-7
http://www.ncbi.nlm.nih.gov/pubmed/5033686
http://dx.doi.org/10.1016/0042-6989(70)90115-X
http://www.ncbi.nlm.nih.gov/pubmed/5440782
http://dx.doi.org/10.1126/science.1069590
http://www.ncbi.nlm.nih.gov/pubmed/12029137
http://dx.doi.org/10.1037/h0055479
http://www.ncbi.nlm.nih.gov/pubmed/14794830
http://dx.doi.org/10.1364/JOSA.55.001158
http://dx.doi.org/10.1038/nn1669
http://www.ncbi.nlm.nih.gov/pubmed/16547513
http://dx.doi.org/10.1098/rstb.2010.0188
http://dx.doi.org/10.1016/j.visres.2008.03.021
http://www.ncbi.nlm.nih.gov/pubmed/18513781
http://dx.doi.org/10.1152/jn.00668.2010
http://www.ncbi.nlm.nih.gov/pubmed/21346201
http://dx.doi.org/10.1523/JNEUROSCI.3407-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/22131401

	Optimal Multimodal Integration in Spatial Localization
	Introduction
	Materials and Methods
	Results
	Discussion
	References


