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Abstract 

Visually responsive neurons typically exhibit a monotonic-saturating increase of firing with 

luminance contrast of the stimulus, and are able to adapt to the current spatiotemporal context by 

shifting their selectivity, being therefore perfectly suited for optimal contrast encoding and 

discrimination. Here we report the first evidence of the existence of neurons showing selective tuning 

for contrast in area V4d of the behaving macaque (Macaca mulatta), i.e. narrow band-pass filter 

neurons with peak activity encompassing the whole range of visible contrasts and pronounced 

attenuation at contrasts higher than the peak. Crucially, we found that contrast tuning emerges after a 

considerable delay from stimulus onset, likely reflecting the contribution of inhibitory mechanisms. 

Selective tuning for luminance contrast might support multiple functions, including contrast 

identification and the attentive selection of low contrast stimuli. 
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Introduction 

Along the visual hierarchy, neuronal responses to increasing levels of luminance contrast are well 

captured by sigmoid-like functions, such as the Naka-Rushton function (Albrecht and Hamilton, 

1982), characterized by a monotonic increase in neuronal firing with stimulus contrast, typically 

followed by a plateau. Such contrast response functions (CRFs) are highly adaptable to the spatial 

and temporal context in which they are measured and neurons shift their selectivity to optimally 

detect small variations in contrast with respect to the local mean (e.g. Bonds, 1991; Enroth-Cugell 

and Shapley, 1973; Maffei et al., 1973; Movshon and Lennie, 1979; Sclar et al., 1989; Sharpee et 

al., 2006). Monotonic CRFs and their adaptability are highly advantageous for optimal contrast 

encoding and discrimination. 

 In recent years, the interplay between spatial selective attention and stimulus contrast has 

been thoroughly investigated, mainly in area V4 (and MT), and multiple models have been 

proposed to describe the effects of attention on CRFs, including contrast gain (Reynolds et al., 

2000), multiplicative re-scaling (Williford and Maunsell, 2006) and additive models (Thiele et al., 

2009). Although still awaiting systematic empirical confirmation, a computational model has 

attempted to reconcile such divergent results (the normalization model of attention, Reynolds and 

Heeger, 2009; Lee and Maunsell, 2009). With the ultimate goal of advancing current understanding 

of the influence of spatially directed attention on neuronal responses to contrast, we maintain that 

fine characterization of CRFs, and their temporal dynamics, in area V4 - as accomplished here, is 

fundamental for at least two reasons. Firstly, the effects of attention on neuronal responses in area 

V4 (and other primate cortical visual areas) have been shown to vary as a function of time (e.g. 

McAdams and Maunsell, 1999; Reynolds et al., 2000); therefore, a full understanding of attentional 

influences on CRFs is likely to benefit greatly from an adequate characterization of the temporal 

dynamics of contrast encoding in this area. Secondly, studies addressing the impact of attention on 

CRFs have rather neglected any potential heterogeneity in contrast coding, likely including 
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monotonically increasing, saturating and supersaturating CRFs (but see Williford and Maunsell, 

2006 for a preliminary effort in this direction). 

The phenomenon of supersaturation (Maffei and Fiorentini, 1973), corresponding to an 

attenuation of neuronal responses in the high-contrast range exceeding the saturation level, has 

mainly been described in V1 cells of the cat and monkey (Albrecht and Hamilton, 1982; Ledgeway 

et al., 2005; Li and Creutzfeldt, 1984; Peirce, 2007), whereas no clear assessment or quantification 

is available for V4 neurons. While previously regarded just as an extreme manifestation of 

saturation, supersaturation has gained increasing interest in the recent past since a few studies have 

hypothesized a specific functional role for the phenomenon (May and Zhaoping, 2011, 2013; 

Peirce, 2007, 2013), suggesting an improved capability of the visual system to encode contrast by 

relying on signals from neurons displaying monotonic and non-monotonic behavior (May and 

Zhaoping, 2011). 

 Here we report the results from experiments where we were able to describe selective CRFs 

- with peak responses across the neuronal population encompassing the whole range of visible 

contrasts - by recording the spiking activity of macaque area V4 neurons in response to simple, 

aperiodic static stimuli (oriented achromatic bars) presented at varying levels of contrast. 
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Materials and Methods 

Experiments were performed on two head-fixed, non-anesthetized, male adult macaque monkeys 

(Macaca mulatta) weighing 10 and 8 Kg, respectively (monkey F and monkey T). Use of the 

macaque monkeys and the experimental protocol were approved by the University of Verona 

Committee for Animal Research (CIRSAL) and by the Department for the Veterinary Public 

Health, Nutrition and Food Security of the Italian Ministry of Health (D.L. n. 116/1992, art. 8/9; 

D.M. n. 19/2007c, 13/02/2007, and n. 200/2009c, 11/11/2009). The monkeys were housed and 

handled in strict accordance with the Weatherall Report’s recommendations about good animal 

practice and their wellbeing and health conditions were constantly monitored by the institutional 

veterinary doctor. 

Recordings were obtained while the animals were engaged in an orientation discrimination 

task; the contrast of the stimuli was task irrelevant, although it contributed significantly to the 

discriminability of target stimuli. This approach ensured that visual responses to contrast were 

uninfluenced by modulations related to the direct behavioral relevance of the property under study. 

In addition, in order to exclude any potential influence of variable attentional load for stimuli 

displayed at different contrast levels, we focused our study on conditions where attention was 

allocated outside the RF, and compared results with data collected in a control experiment in which 

the animals were engaged in a passive fixation task (see Results). 

The use of spatial broadband stimuli (achromatic bars), which appear to be the most effective 

stimuli to characterize neurons in V1 output layers (Yeh et al., 2009), with abrupt onset and 

sustained in time, enabled us to explore the temporal dynamics of contrast encoding by the recorded 

neurons, and this was done for three principal reasons. First, because we anticipated that a fine 

analysis of temporal dynamics might provide important hints as to the underlying circuit-level 

mechanisms. Second, because previous investigations have reported divergent results as to whether 

CRFs of cortical visual neurons are significantly modified during the temporal unfolding of 
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stimulus-driven responses (Albrecht et al., 2002; Hu et al., 2011) and we wished to provide 

evidence bearing on this issue. Third, as stated above, an adequate characterization of the temporal 

dynamics of contrast encoding in area V4 might be critical for revisiting the analysis of attentional 

influences on CRFs, which are known to vary as a function of time (e.g. McAdams and Maunsell, 

1999; Reynolds et al., 2000). 

Surgical procedures and recording methods are described in details elsewhere (Mirabella et al., 

2007). With respect to the recording of neuronal firing, a particular effort was made to exclude any 

multi-unit contribution to the recorded activity, as this study aimed at finely describing and 

quantifying properties of individual neurons in macaque area V4. Spikes were discriminated using 

an online spike-sorting system (part of the data were acquired by using SPS-8701, Signal 

Processing Systems, Prospect, Australia, and part by using the Multichannel Acquisition Processor 

system, Plexon Inc, Texas USA) and acquired for offline analysis at 1 kHz on a PC. In most cases, 

two (up to four) neurons could be recorded simultaneously and accurately differentiated on the basis 

of the size and shape of the spike waveform. Additional selection criteria were applied off-line 

according to the stability of neuronal responses along the whole experimental session. 

Receptive field mapping. Before the behavioral experiment was conducted, each well-isolated cell 

was carefully characterized to determine its preference for orientation and spatial frequency (and 

sometimes for other stimulus properties, such as color) as well as its response to contrast while the 

monkey fixated centrally. The RF size was determined using the minimum response field method 

(Barlow et al., 1967). Bar stimuli of a fixed size (2.2° x 0.3°) were used throughout to be well 

within the classical RF boundary of the recorded neurons, in accordance with data in the literature 

(e.g., Motter, 2009), and as confirmed for each neuron during the initial mapping procedure by 

using flashing bars at different contrast levels, including high contrasts. Note that the minimum 

response field method for mapping RFs is known to underestimate RF size by a factor of 2-3 as 

compared to the extending patches method (Cavanaugh et al. 2002; Walker et al., 2000). 
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Behavioral paradigm and stimuli. We trained two adult macaque monkeys to discriminate the 

orientation of achromatic bar stimuli in return for juice reward. Each trial began with the 

presentation of a fixation point (black square, 0.3° x 0.3° of visual angle; Fig. 1A) on a dark 

background (2.49 cd/m
2
). After the animal acquired fixation, a pentagon cue (1.3° x 1.3°, 20% 

Michelson contrast) was presented at the center of gaze and instructed the monkey to direct 

attention to a position outside the RF of the neuron under study. In order to instruct the monkey to 

allocate attention inside the RF, a triangle cue (1.3° x 1.3°, 20% Michelson contrast) was shown 

instead. After a variable delay, two bars (2.2° x 0.3°) were simultaneously presented, one inside and 

one outside the RF, and they were placed in symmetrical positions with respect to the fixation spot, 

and at equal distance from it. The bars were shown at two possible orientations (the optimal and one 

suboptimal for the neuron), independently chosen on a random basis at the two locations. In order to 

earn a juice reward, the monkey had to discriminate the orientation of the bar at the cued location 

by turning a lever in the appropriate direction. The bar inside the RF was displayed at 7 or 9 

positive contrast levels (from 2.5 to 94% Michelson contrast) selected randomly on each trial; 

additionally, on some trials a zero contrast bar was displayed inside the RF and the monkey was 

rewarded for any response, and we used these trials to establish baseline activity of the neurons. The 

bar outside the RF was of constant contrast (20%) for one animal (F), whereas it varied between 

10% and 80% Michelson contrast for the other animal (T); in the latter case contrast at the two 

locations was independently selected on a random basis. We adopted such protocol for the second 

animal in order to have the animal perform a nearly identical task in the two attentional conditions. 

Crucially, this did not lead to any appreciable difference between the two monkeys in terms of 

behavioral performance or neuronal responses (see Results). Moreover, in order to exclude the 

possibility that the broad-band spatial frequency content or the overall increase in luminance might 

affect results from the main experiment, we also performed a control experiment using Gabor 

patches (sigma 0.4, mean luminance 42 cd/m
2
) shown at the same contrast levels. Importantly, in 
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both experiments we recorded responses from ≥12 repetitions (typically 16) for each stimulus 

condition. 

Fitting procedures. Single-neuron CRFs were determined for each cell using a non-weighted, 

least-squares fitting procedure (Matlab, Curve Finder Tool or CFTool). The mean firing rate of each 

neuron was fitted to an extension of the traditional Naka-Rushton function (Albrecht and Hamilton, 

1982), namely the Peirce function (Peirce, 2007):              
  

    
       

   , where Rmax 

is the firing rate at which the curve asymptotes (note that it corresponds to the maximal response for 

monotonic functions), R0 is the undriven activity, C50 is the semisaturation contrast, i.e. the contrast 

value needed to reach half of the maximal response rate, the exponent n represents the slope of the 

curve and s is the suppressive exponent. When s assumes a value of 1, the function corresponds to 

the traditional Naka-Rushton function, while higher values correspond to non-monotonic patterns. 

To be conservative, we considered a cell to be non-monotonic when s > 1.1 and used additional 

analyses to check for the reliability of cell characterization (see below). We evaluated the goodness 

of fit by calculating the R-square value (1-SSE/SST, where SSE is the Sum of Squares Error, SST is 

Sum of Squares Totals); results were described and further analyzed only for well fitted cells (R-

square > 0.7). We also derived a series of additional parameters of direct interest to describe the 

shape of CRFs. Percentage of response suppression was calculated as the difference between 

maximal response for any value of contrast and the response at maximum contrast, as analytically 

estimated from the curve, normalized to baseline firing (R0). For non-monotonic cells, we 

calculated peak contrast as the contrast at which the maximal response occurred, and the bandwidth 

as the difference between the two contrast levels at which the response was ¾ of the maximal 

response, corresponding to 25% inhibition; note that a minority of non-monotonic cells showed an 

inhibition lower than 25% and their bandwidth could not be measured. 

 With the aim of checking the reliability of cell characterization, in addition to the Peirce 

function, two alternative models were tested. To specifically describe monotonic CRFs, the mean 
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firing rate of each neuron was fitted to the traditional Naka-Rushton function (Albrecht and 

Hamilton, 1982):              
  

    
     

   , where Rmax is the maximal mean firing of the 

neuron, R0 is the undriven activity, C50 is the semisaturation contrast, i.e. the contrast value needed 

to reach half of the maximal response rate, and the exponent n represents the slope of the curve. To 

describe non-monotonic CRFs, we also performed fitting procedures using a skewed Gaussian 

function (Lisberger and Movshon, 1999):                        
 

   
 

  

        , 

where Rmax is the peak height, Cp is the contrast value for which the peak occurs, σ is the peak 

width, sk represents the skewness and R0 is the baseline activity. In this case, we established the 

proportion of non-monotonic cells through the comparison between the Naka-Rushton and the 

Gaussian function, respectively suitable to describe the traditional and the non-monotonic CRFs. 

We used several methods in order to evaluate the goodness-of-fit and compare the efficiency of the 

two functions in describing single cell CRFs in our sample. We considered a cell as being non-

monotonic when it was better fitted by the Gaussian function and monotonic when it was better 

fitted by the Naka-Rushton function. As a first step, we chose Aikake's Information Criterion (AIC) 

(Motulsky and Christopoulos, 2004) for model comparison, as it is one of the most widely used 

methods. The AIC value was calculated for each equation as              , where n 

represents the number of data points being modeled, p represents the number of parameters in the 

model, and RMS is the root-mean-square error of the model fit. The model with the smallest value 

of AIC is most likely to be correct. We computed the probability of choosing the correct model by 

the following equation e
-0.5Δ

/(1+e
-0.5Δ

) where Δ is the difference between AIC scores. We also used 

a related method, the Bayesian Information Criterion, which is identical except that the penalty term 

is         instead of 2p, thus being more stringent. An alternative method, referred to as the 

normalized chi-square by Cavanaugh and colleagues (2002), takes the χ
2
 error term  

       
 

   
 , 

where i is the index of this particular contrast level, e is the expected response at this contrast level 
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given the current model parameters, o is the observed response, and σ
2
 is the trial-wise variance in 

responses at this contrast. The χ
2
 error term is then normalized by the degrees of freedom of the 

model. As with the AIC, the best fitting and most efficient model is taken to be that with the lowest 

χN
2 

value; also this method inflicts a more stringent penalty on models with additional parameters. 

We finally evaluated the adjusted R-square value as   
   

 
      

   

     

, where SSE is the Sum of 

Squares Error, SST is Sum of Squares Totals and (p + 1) penalizes the number of parameter. Both 

the Peirce function and the combination of Naka-Rushton and skewed Gaussian functions provided 

a good quantitative description of the recorded neurons. However, we chose the Peirce function as 

the standard approach because of its ability to characterize any of the cells without the need of pre-

classifying them. 

Analysis of temporal dynamics. We quantified the degree to which the response of neurons rises 

monotonically with respect to contrast using a dimensionless Monotonicity Index (MI) (Ledgeway 

et al., 2005) calculated as: 
               

               
, where Rmax is the maximum response of the neuron, R100 

is the response to the maximal contrast used and R0 is the response to the null stimulus. MI assumes 

the value of 1, when the response is monotonically increasing (i.e. the response to the highest 

contrast is the maximal response of the neuron); it is smaller than 1, when the pattern is non-

monotonic (i.e. the response to the highest contrast is not the maximal response of the neuron). Note 

that MI can assume the value of –Infinite when Rmax equals R0 or it is undefined when Rmax, R100 

and R0 are equal; such values were not included in the average calculation (in the post-stimulus 

epoch their incidence was marginal: 10% on average). To quantify the effects of stimulus 

orientation on neuronal response we computed the Orientation Index (OI)
 
as: 

               

               
, where 

Rpref is the response of the neuron to the preferred orientation and Runpref is the response to the 

unpreferred stimulus; the percentage orientation selectivity was calculated as     
   

       
. Note 

that both MI and OI will assume a value around zero before stimulus onset; in fact, at that time, the 
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maximum response of the neuron and the response to the maximal contrast, for MI, and the 

response to the preferred and unpreferred orientations, for OI, do correspond to baseline activity, 

thus leading to a difference roughly equal to zero. 

To achieve a good level of temporal resolution we calculated mean firing rate, and 

consequently both indices, in 200 overlapping time windows (width 20 ms, shift 1 ms). Trials were 

aligned with respect to stimulus onset or to neuronal response onset. In the latter case, latency of the 

neuronal response for each contrast level was used as the starting point of the first time window. 

Operationally, we constructed a PSTH and smoothed it with a Gaussian filter (α = 8 ms); we then 

defined and calculated latency as time to half the peak of the response waveform (Gawne et al., 

1996). 

To illustrate the temporal dynamics of CRFs (Fig. 6), we used mean firing rate calculated in 

16 partially overlapping time windows (width 50 ms, shift 10 ms, covering a total interval of 200 

ms), starting from response onset, as previously defined. 

To compare cell behavior between the early and late phases of visual response, we selected 

the two windows with the most divergent pattern of monotonicity (0-50 ms and 100-150 ms after 

response onset) to perform fitting procedures. 
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Results 

We trained two adult macaque monkeys to discriminate the orientation of achromatic bar stimuli in 

return for juice reward (see Materials and Methods and Fig. 1A). Since we also planned to 

characterize the influence of spatial attention on neuronal CRFs in macaque area V4 – an aspect of 

the study which is not reported here, the general approach was chosen to be compatible with this 

goal. As illustrated in details in the methods section, in separate blocks, the animals were instructed 

to direct attention to either of two bars simultaneously presented on the screen, one inside and one 

outside the RF. The bar inside the RF was displayed at various contrasts selected randomly on each 

trial. The one outside the RF was of constant contrast (20%) for one animal, whereas it varied 

between 10 and 80% for the other animal; in the latter case contrast at the two locations was 

independently selected on a random basis. After the monkeys reached a high level of performance 

at the task (Fig. 1B), we recorded responses of V4 neurons to different contrasts; 332 cells (172 

from monkey F and 160 from monkey T) were selected for in-depth analysis on the basis of the 

quality of recordings. In what follows we will mainly report on responses elicited by an optimally 

oriented stimulus with attention allocated outside the RF, except when otherwise stated. 

Heterogeneous contrast response functions in V4 

Figure 2A shows the peri-stimulus time histograms (PSTHs) of two representative neurons. Both 

neurons display a decrease in latency with increasing contrast and a phasic response to the stimulus, 

followed by rapid adaptation, reaching a plateau about 150-200 ms after stimulus onset. Despite the 

similarity in their transient behavior, the two neurons show different CRFs, i.e. a monotonically 

increasing (upper panels) and a non-monotonic (or band-pass) profile (lower panels), respectively. 

In the top example, as contrast increases, the PSTHs scale upwards, while in the bottom example 

the maximal response clearly occurs for intermediate levels of contrast. 

To characterize quantitatively neuronal responses to varying contrast levels, we calculated 

mean firing rate in a 100 ms time window starting 40 ms after stimulus onset (Fig. 2A, lower right 



 13 

panel), according to the average response latency to the highest contrast in the sample of recorded 

neurons. We then determined single-neuron CRFs by fitting the Peirce function (Peirce, 2007), an 

extension of the traditional Naka-Rushton function (Albrecht and Hamilton, 1982), which is able to 

accommodate for both monotonic and non-monotonic patterns of response by virtue of a 

suppressive exponent (see Materials and Methods). For a suppressive exponent equal to 1 the cell 

is monotonic, whereas for higher values it is non-monotonic. The sample of recorded neurons 

showed highly heterogeneous CRFs, including increasing, saturating and non-monotonic patterns 

(Fig. 2B). Consistently, the distribution of the suppressive exponent (Fig. 3A, left panel) showed a 

substantial proportion of cells showing varying degrees of suppression at high contrasts (s>1) in 

addition to traditional monotonic saturating cells (s<=1). To estimate the attenuation of response 

occurring at the maximal contrast we calculated the percentage of response suppression from the 

fitted data (see Materials and Methods): half of the total well fitted cells showed a degree of 

attenuation greater than 10% (Fig. 3A, right panel). Figure 3A confirms that contrast coding in the 

population of recorded cells was highly heterogeneous and distributed along a continuum ranging 

from increasing CRFs to narrow band-pass filter tuning profiles in response to contrast. In order to 

provide a systematic description of parameters characterizing monotonic vs. non-monotonic cells, 

we set a conservative criterion to diagnose selective tuning for contrast, corresponding to a 

suppressive exponent (s) higher than 1.1 (see Materials and Methods). Accordingly, selective 

tuning for contrast was diagnosed in 31% of the total neurons. Further analyses and considerations 

over classification issues confirmed the existence of a reliable and consistent proportion of cells 

showing selective tuning for contrast in the population (see below). Importantly, the incidence of 

contrast selective cells was comparable between the two monkeys (34% and 28%, respectively, in 

monkey F and T), excluding an account of the observed phenomenon in terms of a contrast 

assimilation effect. In fact, while the contrast of the bar outside the RF was constant for one 

monkey (F), it varied randomly across trials for the other (T). Compatible results were obtained 

under conditions where attention was allocated inside the RF of the neurons under study (36% of 
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contrast selective neurons, on average, across the two animals) and also in a passive fixation 

condition in which only one stimulus appeared on the screen (34% of contrast selective neurons, 

37/109 well fitted cells). These results rule out accounts of the phenomenon in terms of attentional 

effects. Finally, similar results were obtained using Gabor stimuli instead of bars (28% of contrast 

selective neurons, 37/132 well fitted cells; see Materials and Methods), thus excluding a potential 

influence of the broad-band spatial frequency content of the bar stimuli or of variations in mean 

luminance. 

Quantitative properties of monotonic and selective contrast response functions 

Monotonic (s ≤ 1.1) and selective (s > 1.1) cells were examined separately. For traditional 

monotonic cells (Fig. 3B), the semisaturation contrast of the neurons, as described by the C50 

parameter (left panel), clustered around very low contrast levels (mean 5.2±0.3 s.e.m.), reflecting 

high contrast sensitivity across the neuronal population. Likewise, the slope of the curves tended to 

be very steep (mean 6.5±0.3 s.e.m., Fig. 3B, right panel), reflecting high contrast discriminability 

within the dynamic range. Such behavior implies a great capacity to detect very low contrast stimuli 

but a limited capacity to discriminate among high contrast levels. Contrast sensitivity in monotonic 

V4 cells thus appears to be higher than reported in previous studies (Cheng et al., 1994; Williford 

and Maunsell, 2006), possibly due to a number of factors, including the type of stimulus and the 

type of analysis. For selective cells, peak contrast and bandwidth were calculated from the fitted 

data (see Materials and Methods). Peak contrast spanned the whole range of contrasts (Fig. 3C, 

left panel), implying that different cells are specifically responsible for coding different levels of 

contrast. The full bandwidth of selective neurons ranged from 0.04 to 1.4 LU (Fig. 3C, right panel), 

reflecting a variable degree of selectivity across the population. The two patterns of response, 

namely the traditional monotonic and the non-monotonic profiles, are likely to play a distinct role in 

contrast coding (see below). In particular, neurons characterized by band-pass tuning are well suited 
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to encode luminance contrast in a way similar to what other neurons do in relation to other low-

level visual features, such as color and orientation. 

Consistency of classification of monotonic and selective CRFs 

In order to assess the reliability of the classification approach used to unveil the existence of distinct 

subpopulations of monotonic and non-monotonic cells, we applied alternative and well-established 

methods (see Materials and Methods) for modeling and classifying cells. Each and every 

classification approach we tested revealed the existence of a consistent fraction of non-monotonic 

CRFs (see Table 1). 

 To further strengthen the idea that cells classified as non-monotonic according to the 

suppressive exponent of the Peirce function were indeed tuned for contrast, we fitted data with a 

skewed Gaussian function (see Materials and Methods), which is typically used to describe 

selectivity tuning. We compared fitting results obtained from both equations using Akaike’s 

Information Criterion (AIC; see Materials and Methods) so as to determine which model was 

more likely to be the correct one for the given cell. The scatter plot in Figure 4A depicts AIC 

values for the Gaussian function and the Peirce function. Interestingly, the comparison between 

these two functions revealed that non-monotonic cells were fitted almost equally well with the 

Gaussian function (median explained variance 90.54%). Specifically, 57% of the cells were better 

fitted by the Peirce function, while 43% by the Gaussian function. Note that points lie very close to 

the diagonal and the posterior probability of having chosen the right model is quite low (color 

coding). As evident in the two single cell examples shown in Figure 4B, the two models describe 

non-monotonic patterns almost equally well; note that the selected examples are two of the most 

extreme cases, namely among the more distant points from the diagonal (black points in Fig. 4A). 

 The Gaussian function provided a very good model for non-monotonic CRFs (Fig. 4A-B), 

while the traditional Naka-Rushton function (Albrecht & Hamilton, 1982; see Materials and 
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Methods) is known to be a good descriptor of saturating monotonic CRFs. We tested the efficiency 

of these two alternative models in describing and discriminating between monotonic and non-

monotonic patterns of response to contrast. The scatter plot in Figure 4C depicts AIC values for the 

Naka-Rushton function and the Gaussian function. As low values of AIC indicate that the 

regression line properly fits the data, points on the left of the diagonal are better fitted by the Naka-

Rushton function (monotonic CRFs), while points on the right of the diagonal are better fitted by 

the Gaussian equation (non-monotonic CRFs). Interestingly, data are distributed almost 

continuously in the range between monotonic and non-monotonic CRFs. Despite this, most of the 

data points are not lying on or near the diagonal and posterior probabilities to have chosen the right 

model are quite high (color coding: pure red and blue points). Note that there is a substantial 

proportion of data points lying on the right of the diagonal (21%), meaning that the CRFs of the 

corresponding cells are better fitted by the Gaussian equation and are therefore non-monotonic 

according to this method. As evident in Figure 4D, with this approach, monotonic saturating cells 

are better described by the traditional Naka-Rushton function while non-monotonic patterns are 

better described by the Gaussian function. 

 In addition to AIC, we compared the Naka-Rushton and the Gaussian function using 

different approaches (see Materials and Methods), namely AIC, Bayesian Information Criterion 

(BIC), adjusted R-square (adj-R
2
) and normalized Chi-square (χN

2
); results are summarized in 

Table 1. All the comparisons revealed that two different patterns of contrast response, namely 

monotonic and non-monotonic, emerge in our sample of neurons. The small differences in 

classification rate obtained with different approaches reflect the continuum in CRF profiles between 

highly monotonic and non-monotonic profiles; in other words, V4 neurons showed very 

heterogeneous patterns of response to contrast, including increasing, perfectly saturating, weakly 

non-monotonic and Gaussian-like profiles. 

Temporal dynamics of contrast response functions 
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To study the temporal dynamics of contrast encoding in area V4, we first calculated population 

PSTHs (Fig. 5). As can be seen in Figure 5A, the average latency of response decreased 

significantly as contrast increased, in line with previous reports (e.g. Albrecht, 1995; Gawne et al., 

1996; Lee et al., 2007). As shown in the figure, the average population response approached 

saturation at 40% contrast, reflecting a monotonic behavior at the peak. Interestingly, the population 

response showed a marked drop immediately subsequent to the initial transient increase in firing for 

all tested contrasts except the lowest, implying that higher contrasts engage proportionally greater 

suppressive effects compared to lower contrasts; in other words, about 200 ms after stimulus onset, 

neuronal activity became nearly independent of contrast (except for the lowest contrast). Given that 

the population of recorded neurons included a substantial proportion of selective neurons (see Fig. 

3A), we considered these neurons separately (Fig. 5B). In the early phase post-stimulus onset, the 

average response of this population of neurons reached a maximum at 40% contrast, while higher 

contrasts led to lower responses (darker lines). Again, a clear attenuation of firing occurred around 

100-150 ms, and was particularly strong for high contrasts, so that the average response around 200 

ms after stimulus onset was highly similar across all contrasts. This pattern of results was even 

more pronounced in the subpopulation of those selective cells displaying maximal responses for 

contrast values lower than 20% (Fig. 5C). Here the average maximal response in the early phase 

occurred for 20% contrast and the response became contrast-independent around 150 ms post-

stimulus onset, although there was a small tendency for the highest contrast to produce the smallest 

response. It is worth noting that the leftward shift in the latency of response along the range of 

tested contrasts was equally evident for the selective cells (Fig. 5B, C). The results in Figure 5 

suggest that across the population the degree of non-monotonicity increases over time. 

To achieve fine-grain analysis of the temporal dynamics of neuronal responses, we calculated 

mean firing in 20 ms time windows shifted by 1 ms. As a first step, we computed the Monotonicity 

Index (MI) (Ledgeway et al., 2005)
 
within each 20 ms-window. MI is defined as the ratio between 
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firing rate enhancement (or reduction) at the highest contrast tested relative to the maximum 

response (at any contrast) and the difference between maximum response and the baseline (see 

Materials and Methods). As shown in Fig. 6A, across the population MI increased sharply in the 

first ~15-20 ms following onset of the preferred stimulus (Fig. 6A, solid black line), reaching a 

maximum around at 80 ms. Monotonicity then decreased rapidly and reached a minimum at ~150 

ms post-stimulus onset, meaning that the highest contrast triggered maximal suppression around 

this point in time. This timing is compatible with the intervention of a relatively slow inhibitory 

mechanism (see Discussion). After 150 ms, MI showed a weak increase to then level off for the 

remainder of the trial. Importantly, the drop in monotonicity was in no way due to the high level of 

discharge rate induced by the optimally oriented stimulus. Indeed, the MI calculated for the non-

preferred orientation underwent an even greater reduction over time (Fig. 6A, black dotted line); the 

difference observed between the two orientations is likely linked to the concomitant increase in 

orientation selectivity (see Materials and Methods) over time at the population level (Fig. 6A, red 

line). Intriguingly, the temporal dynamics of orientation selectivity undergoes a phase of increase 

that closely matches the timing of monotonicity reduction. This suggests important commonalities 

between the circuits and mechanisms mediating the emergence and refinement of both contrast 

selectivity and orientation selectivity, likely including a common inhibitory influence (see 

Discussion). 

To rule out the possibility that the observed latency reduction with contrast (see Fig. 5) could 

at least partly account for the observed reduction in MI, PSTHs were aligned with the latency of 

response and mean firing rate was calculated in 20 ms time windows starting from response onset 

(see Materials and Methods; this approach was applied for all subsequent analyses). Crucially, 

with this approach and for both stimulus orientations, MI still showed a rapid increase at response 

onset (~0 ms), followed by a progressive decrease and a minimum centered at ~120 ms, (Fig. 6B), 

replicating the results in Fig. 6A. 
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We then tested whether all single neurons showed a decrease in monotonicity over time by 

comparing MI values in two critical time windows (0-50 ms and 100-150 ms from response onset, 

see Fig. 6B). Across the population of recorded neurons, 63% of cells showed a decrease in 

monotonicity while 29% of cells showed an increase in monotonicity (8% of the cells did not show 

any change in MI). Importantly, MI showed markedly diverging dynamics in these two 

subpopulations (Fig. 6C): while the former was characterized by a strong reduction of average MI 

over time (Fig. 6C, solid line), the latter displayed on average a nearly flat temporal dependence 

(Fig. 6C, dotted line). Finally, to illustrate the dynamic changes of CRFs at the single cell level, we 

plotted the mean firing rate calculated in partially overlapping time epochs as a function of time 

from response onset and contrast (see Materials and Methods). Fig. 6D-E shows responses of two 

representative neurons in which CRFs changed from an initial monotonic function to a narrow 

band-pass tuning, while Fig. 6F shows a representative neuron whose CRF was simply rescaled 

over time, formally corresponding to a modest increase in monotonicity. It thus appears that the 

increase in non-monotonicity is a pervasive phenomenon in macaque area V4, though it does not 

affect all neurons in the sample. 

Previous studies focusing on contrast response temporal dynamics applied very different 

approaches and found divergent results (Albrecht et al., 2002; Hu et al., 2011) with only Hu and 

colleagues (Hu et al., 2011) showing an effect of time on the shape of CRFs. They focused their 

analysis on the first few tens of milliseconds after stimulus onset and found that CRFs changed 

from increasing to saturating. This is in line with our results, highlighting that both contrast 

saturation and contrast selectivity require time to develop, and suggesting that a change in the shape 

of CRFs toward selective behavior probably occurs later in time, after the intervention of 

suppressive mechanisms (see Discussion). Critically, in both cited experiments, recordings were 

obtained in V1 of anesthetized animals. These two major differences with respect to our approach 
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may have well prevented the occurrence of non-monotonic tuning for contrast in those studies, with 

both the recording site and alertness/behavior of the animal potentially playing a crucial role. 

Using best-fitting procedures we directly and quantitatively compared, on a cell by cell basis, 

the two critical windows (see Fig. 6B): an early window after response onset (0-50 ms), namely the 

one corresponding to the maximal degree of monotonicity, and a window in which maximal 

suppression for high contrasts occurred (100-150 ms), corresponding to the band-pass filtering 

stage. The proportion of cells displaying selective tuning (s > 1.1; Fig. 7A, left panel) increased 

over time. Consistently, the percentage of suppression at high contrasts also increased considerably 

(p < 0.01), from an average value of 16% to 38% (Fig. 7A, right panel). The distribution of (s) in 

the two windows differed significantly (p << 0.01, Kolmogorov-Smirnov test) and the mean was 

significantly higher in the second window (p << 0.01, one-tailed, paired t-test). To further examine 

monotonic and selective cells separately, we concentrated on cells with the same overall type of 

behavior in both time windows in order to quantitatively assess changes in CRF parameters over 

time. Interestingly, in neurons showing monotonic CRFs in both time windows, we observed a 

significant increase in the slope from early to late epochs after response onset (Fig. 7B, right panel), 

but no reliable change in contrast sensitivity over time (Fig. 7B, left panel), corresponding to an 

enhanced capacity of the cell to discriminate contrasts within its dynamic range, but also an overall 

narrowing of the range over which discriminative responses are possible. Of major interest, neurons 

with selective tuning in both time windows showed no obvious variation in peak contrast (Fig. 7C, 

left panel) but a considerable narrowing in bandwidth (Fig. 7C, right panel). The latter result 

reflects an increased capacity of the cells to selectively encode a specific range of contrast values. 

Fig. 7D shows four typical single cell examples. In particular, the neuron shown in the top left panel 

maintains a monotonic pattern of response in both time epochs; the one in the bottom-right panel 

maintains a selective behavior across epochs; finally neurons in the other two panels undergo a 

transition from monotonic to band-pass tuning. Overall about 100-150 ms after response onset, V4 
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neurons in the population are able to segment sharply all the visible contrast range, both with steep 

high-pass and with narrow band-pass contrast tuning. 

To obtain a global appreciation of the properties of area V4 neurons in coding luminance 

contrast, we separately considered the populations of monotonic and selective cells at the maximal 

expression of their sensitivity or selectivity, respectively, as measured in the late time window. Fig. 

8 (left panel), illustrates representative examples of monotonic neurons in the population, showing 

considerable variability in the dynamic range position and in the slope of the CRFs; one should also 

note that the population of monotonic cells includes some slightly supersaturating neurons, which 

confirms the existence of a continuum between the strictly monotonic and the selective cells (see 

also Fig. 4C). More importantly, the right panel illustrates some representative examples of 

selective cells with highly heterogeneous peak contrasts and bandwidths; crucially, very narrowly 

tuned cells exist both at low and high contrasts. The combination of these two coding strategies 

might be crucial for optimizing perception at the service of (different) behavioral and attentional 

tasks (see Discussion). 

Possible influence of fixed stimulus size 

In the described experiments, we used bar stimuli of fixed size (2.2 x 2.2°; see Material and 

Methods). This raises the possibility that the observed effects could at least partly reflect the non-

optimality of the visual drive for the recorded neurons, or the compound contribution of the center 

and of the surround depending on RF size across the neuronal population. In particular, in early 

visual cortex (V1 and V2), the extent of spatial summation diminishes while surround suppression 

strengthens with increasing contrast and time of stimulation (Anderson et al., 2001; Cavanaugh et 

al., 2002; Gilbert et al., 1996; Henry et al., 2013; Kapadia et al., 1999; Pack et al., 2005; Sceniak et 

al., 1999). Moreover the low spatial and temporal frequencies of stimulation, as used here, have 

been shown to be relatively more effective in driving the suppressive surround than the excitatory 

portion of the RF in V1 neurons (Webb et al., 2005). Interestingly, the temporal dynamics for the 
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emergence of contrast selectivity described here is reminiscent of the delayed intervention of 

surround suppression mechanisms in V1 (Bair et al., 2003; Smith et al., 2006; Henry et al 2013). 

However, we carefully mapped RFs to ensure that our stimuli fell well within the classical RF, even 

at high contrast levels (see Materials and Methods) and we excluded cells whose RF center was 

located at less than 2.3° of eccentricity, effectively avoiding the foveal representation of V4, where 

the probability of stimulating the suppressive surround might be higher, due to the generally smaller 

RF size. In addition, systematic mapping of V4 RFs has shown that, within the range of 

eccentricities that we sampled, RF size varies in dimension (square root of the area) between 3.5°-

9.0°, which is clearly above the size of our bar stimuli (Motter, 2009). Moreover, neuronal 

responses in V4 are maximal for bar lengths between 2° and 4°, with suppressive effects beginning 

to be robust for lengths greater than 4° (Figure 10, Cheng et al., 1994), which is much more than the 

length of our stimuli. However, as a more direct test, we analyzed the incidence of selective tuning 

for contrast in our sample of recorded neurons as a function of RF eccentricity, which is known to 

covary with RF size (Desimone and Schein, 1987; Gattass et al., 1988; Motter, 2009). As shown in 

Figure 9, the incidence of contrast-selective cells was comparable across eccentricities, and no 

correlation was found between the value of the suppressive exponent (s) and the eccentricity of RF 

centers (p=0.79). In addition, no correlation was found between peak contrast and the eccentricity 

of RF centers (p=0.25) in selective cells. In conclusion, the non-optimality of the visual stimulation 

is unlikely to have played any significant role in producing selective tuning for contrast in the 

present experiment. Nonetheless, there might be commonalities between the intervention of 

inhibitory mechanisms shaping band-pass tuning profiles of contrast selective neurons in V4, as 

hypothesized here, and the known phenomenon of surround suppression (see also the Discussion). 
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Discussion 

 

Contrast selectivity in V4 

Here we demonstrate the existence of cells in macaque area V4 displaying band-pass tuning for 

contrast. These neurons are characterized by narrow filtering properties and the peaks of their CRF 

cover the whole range of tested contrasts, being thus similar to other types of band-pass filters, 

which form the basis for early vision (Wilson et al., 1990). We therefore conjecture that, at the 

neurophysiological level, contrast is encoded not only as a measure of stimulus strength, or intensity 

(through traditional monotonic functions), but also as a basic stimulus feature, similarly to other 

visual features, such as color or orientation. Contrast selective tuning, as described here, potentially 

shares commonalities with the well-known phenomenon of supersaturation, a deflection of CRFs in 

the high-contrast range. The latter phenomenon, first recognized decades ago (Maffei and 

Fiorentini, 1973), has been often reported (Albrecht and Hamilton, 1982; Bonds, 1991; Ledgeway 

et al., 2005; Li and Creutzfeldt, 1984; Mancilla et al., 1998; Tyler and Apkarian, 1985; Peirce, 

2007), although only rarely has supersaturation been examined in sufficient detail (Ledgeway et al., 

2005; Peirce, 2007). The phenomenon, mainly described at early stages of the cortical visual system 

(mostly V1), has generally been considered as an extreme manifestation of saturation of CRFs. As a 

result, a systematic quantification of its relevant parameters, such as the degree of attenuation, is 

still lacking. Only recently, some studies raised the possibility that supersaturation might play a 

distinct functional role (Peirce, 2007, 2013; May and Zhaoping, 2011, 2013). Notwithstanding 

potential similarities, given the specific characteristics of non-monotonic CRFs described here 

(including narrow peaks falling along the entire spectrum of visible contrasts), we believe that we 

are actually tackling a different phenomenon, more properly defined as a distinct form of selective 

tuning for contrast. Moreover, our results reveal that ~56% of the selective cells show a suppression 

at high contrast greater than 30% in early phases of the neuronal response, while the proportion of 

cells that meet this criterion rises to ~87% in later phases. Aspects of the experimental methodology 
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(e.g., experimental paradigm, stimulus type, recording site) and data analysis in previous studies 

have likely contributed to largely neglecting this type of neuronal behavior. Interestingly, the 

proportion of contrast selective cells was similar with Gabor and bar stimuli, suggesting that the 

phenomenon is general and does not reflect some form of flexible coding wherein RFs are morphed 

according to the stimulus, as has been demonstrated for neurons in layers II and III of macaque V1 

(Yeh et al., 2009). 

Contrast selectivity and its potential functional role 

Selective tuning for luminance contrast might support multiple functions. Our brain not only has a 

great capability of discriminating luminance contrast (Legge and Foley, 1980; Nachimias et al., 

1973), but also of classifying it (Georgeson and Sullivan, 1975; Gottesman et al., 1981). Recent 

identification experiments (Chirimuuta and Tolhurst, 2005) show that humans are able to accurately 

categorize patterns that differ in contrast by a factor of two. This fits well with the average 

bandwidth of 0.3 LU measured here at 150 ms from response onset. The proven ability of human 

subjects in contrast categorization could in principle rely on monotonic response functions 

(Chirimuuta et al., 2003), with an increasing efficiency as the steepness of the monotonic CRFs 

increases. However, the inclusion of band-pass tuned detectors within a population of neurons will 

improve both the accuracy and energy efficiency of contrast coding (May and Zhaoping, 2011), and 

might also reduce signal correlation across cells with different contrast tuning characteristics, thus 

yielding a potential benefit for a decoder (Averbeck et al., 2006). 

Selective coding of luminance contrast is also crucial for the attentive selection of middle and 

low contrast stimuli. Specifically, our results are consistent with one study (Pashler et al., 2004) 

showing that human observers are able to efficiently select middle and low contrast stimuli among 

high contrast distracters. This likely reflects a form of feature-based attention mechanism directed 

towards any specific value of luminance contrast. In turn, a feature-based mechanism of this kind 

requires that specific neural populations exist which are capable of coding luminance contrast in a 
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selective manner – exactly the capability offered by the non-monotonic neurons that we describe. 

More generally, this coding capability might account for other observations in which top-down 

guidance can override sensory-driven saliency (Einhaüser et al., 2008; Ludwig and Gilchrist, 2006) 

by selectively boosting the neural representation of low contrast levels. 

There are two intriguing results in the psychophysical and fMRI literature that fit nicely with 

the present report of contrast selective neurons. Adapting to a texture of fixed contrast elements 

impairs the visibility of textures composed of element with straddling contrasts, indicating the 

presence of a contrast selective mechanism (Wolfson and Graham, 2007, 2009). The texture contrast 

adaptation selectivity is comparable to the narrow tuning of neurons observed here. Moreover, 

adapting to contrast induces a decrease of BOLD responses in early visual cortices (V1-V3), but not 

in V4 (Gardner et al,. 2005). For this area the BOLD response to stimuli of lower and higher 

contrasts relative to the adapter is paradoxically increased. This is consistent with the hypothesis that 

V4 is sensitive to contrast changes, as claimed by the authors, but also with the existence of neurons 

tuned for contrast in analogy with spatial frequency and orientation neuronal selectivity (Livingstone 

and Hubel, 1988; Movshon and Blakemore, 1973). 

Temporal dynamics of contrast selectivity and possible underlying mechanisms 

The temporal analysis of neuronal responses revealed a dynamic transformation of contrast coding, 

from monotonic responses to selective tuning. Early V4 responses (within 50 ms from stimulus 

onset) were predominantly monotonic and dominated by excitatory summation, along with a 

contribution of contrast adaptation and contrast gain mechanisms (Müller et al., 1999). Non-

monotonic selectivity emerged more gradually, peaking ~150 ms after stimulus onset. We speculate 

that this might correspond to a later categorization stage wherein neurons evaluate and classify 

contrast in order to support specific perceptual abilities. This transformation was evident in 

evolving response profiles at the population level as well as at the level of individual neurons, albeit 

with some variability. For most of the cells, the time taken for the development of selective tuning 
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might reflect a time consuming mechanism by which contrast information is recurrently encoded 

with gradually increasing selectivity. Recurrent processing could occur locally or could involve 

feedback from higher areas. However, many neurons exhibited selective tuning right after the 

response onset, suggesting that feedback connections from higher-level areas – which are thought to 

modulate rather than establish neural selectivity (Bullier et al., 2001; Fellemann and Van Essen, 

1991) – might not play a primary role. We hypothesize that this recurrent network architecture 

might correspond to a normalization mechanism almost identical to the one generating contrast 

saturation (Carandini et al., 1997; Heeger, 1992), or at least strongly capitalizing on its main 

components, with selective inhibition for high contrasts being a decisive factor. Indeed, inhibition 

has been recently identified as a major determinant of spatial and temporal constrains of neuronal 

responses in the visual cortex of awake mice (Haider et al., 2013). 

Interestingly, we also found that the time course for the emergence of contrast selectivity 

strikingly matches that for the refinement of orientation selectivity, supporting the idea that they 

might be mediated by shared or highly similar inhibitory mechanisms. In fact, it has been suggested 

that the shape of orientation tuning curves changes over time, due to the intervention of global 

excitation early in the response followed by the intervention of inhibitory circuits producing a 

substantial decline of the neuronal response for unpreferred orientations (Ringach et al., 1997; 

Shapley et al., 2003). We hypothesize that a similar biphasic involvement of excitation and inhibition 

might be responsible for building up selective tuning for contrast. 

The intervention of inhibitory mechanisms shaping band-pass tuning profiles of contrast 

selective neurons in V4, as hypothesized above, might also reflect the engagement of normalization 

signals similar to those deemed responsible for cross-orientation inhibition (Freeman et al., 2002; 

Smith et al., 2006) and to some extent contributing to orientation selectivity (Xing et al., 2011). 

These normalization signals are generated near the preferred spatial position of a neuron, are 

characterized by broad selectivity (untuned suppression; Freeman et al., 2002; Smith et al., 2006) 
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and are largely immune to adaptation (Freeman et al., 2002). Notably these signals are also 

characterized by a very short latency, being as fast as the excitatory component (Smith et al., 2006), 

therefore making it rather unlikely that similar suppressive mechanisms could contribute 

significantly to delayed selective tuning for contrast in V4. 

A potential source of inhibition might also correspond to the intervention of surround 

suppression mechanisms. A direct involvement of the suppressive surround of V4 neurons in 

generating selective tuning for contrast could be safely excluded (see the Results). However, 

contrast tuning could be mediated by surround suppression at the level of the inputs to V4, or it may 

even be present at earlier processing stages. Stimuli of ~2 degrees in size, as used in the present 

study, are large enough to directly encroach on the suppressive region of RFs, including those of V1 

(Cavanaugh et al., 2002; Sceniak et al., 1999) and V2 (Solomon et al., 2004), generating a lower 

response at high contrast. A non-linear pooling of the input to V4 may enhance the suppression, in 

turn generating the narrow selectivity. In this framework the position of peak contrast may result 

from the spatial extent of the input pooling and the ratio between the strength of the center and 

surround responses. The temporal dynamics between excitation to the RF, which is rather short-

latency and transient, and the suppressive signal from the surround, which has been shown to exert 

a delayed and prolonged effect on neuronal firing in V1 (Bair et al., 2003; Smith et al., 2006; Henry 

et al., 2013; Webb et al., 2005), is also consistent with the delayed emergence of full-blown contrast 

selectivity after visual stimulation, as described here. However, it is important to note that any 

described delay of suppression in V1 occurs within a relatively short time scale (within 10-60 ms 

after the onset of the excitatory component; e.g. Bair et al., 2003; Smith et al., 2006; Henry et al., 

2013), while the maximal expression of contrast selectivity that we describe here in V4 occurs 

considerably later in time, ~120 ms after response onset. 

It has been suggested that surround suppression is likely to serve a number of purposes, 

including redundancy reduction (Atick 1992), noise rejection (Chen et al. 2006), figure-ground 
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segmentation (Allman et al. 1985), and feature detection (Hubel and Wiesel 1965), but also more 

generic functions of cortical networks, such as normalization and gain control (Tsui and Pack, 

2011). It may well also serve the generation of contrast-tuning, of the type observed here. However, 

whatever the local circuits mediating the emergence of the contrast tuning, the evidence of a narrow 

tuning selectivity and of a wide spread of preferred contrasts point to a functional role of the 

phenomenon possibly related to contrast categorization and the generation of filters that can be 

selected by attention. 

We speculate that contrast selectivity might be a slowly emerging property along the visual 

system, with V4 perhaps playing a key role, as also shown by the inability to select relatively less 

prominent stimuli - including low contrast stimuli - after V4 lesions (De Weerd et al., 1999; 

Schiller, 1993). In this regard, our results are in line with the recently proposed notion that the 

unifying function of V4 circuitry is to enable “selective extraction” by facilitating figure-ground 

segmentation of the visual scene and attentional filtering (Roe et al., 2012). According to this view, 

contrast selectivity would result from the dynamical configuration of a feature extraction network, 

supporting specific functions like contrast identification and the attentive selection of low contrast 

stimuli. The current demonstration that coding for contrast in macaque area V4 is highly 

heterogeneous and is critically skulped by a time-consuming mechanism now calls for a re-

examination of the interplay between spatial selective attention and contrast in this brain area. 
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Figures and figure legends 

 

Figure 1 Experimental paradigm and task performance. A, Behavioral task. The panels illustrate the 

temporal sequence of events within an example trial. The animal was trained to perform orientation 

discrimination on a bar stimulus located outside the neuron’s RF (upper left quadrant); meanwhile, 

a bar was also displayed inside the RF at different contrast levels in two possible orientations. FP is 

the fixation point; RF indicates the classical receptive field; the pentagon represents the cue 

stimulus instructing the animal to allocate attention outside the RF; bars represent the stimuli to be 

discriminated; labels indicate the duration of each event in milliseconds. Note that the background 

is shown in gray for illustrative purposes (real luminance value: 2cd/m
2
). B, Accuracy (percentage 

of correct responses) and mean reaction times (RTs) as a function of contrast (% Michelson 

contrast) are represented in the left and in the right panel, respectively. Solid and dashed lines, 

respectively, depict accuracy (or RTs) for the orientation discrimination task performed inside and 

outside the RF of the neuron under study, separately for monkey F (in black) and T (in gray). Only 

one data point is shown for Monkey F in the attention-outside condition because the contrast was 

set to be constant (20%). 
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Figure 2 Response of V4 neurons to luminance contrast. A, Peri-stimulus time histograms 

(PSTHs). PSTHs are plotted for 6 logarithmically-spaced levels of contrast and aligned with 

stimulus onset for a monotonically increasing (upper panels) and a contrast selective (lower panels) 

single cell example. The light blue shaded area represents the 100ms time window used for some of 

the analyses to calculate mean firing rate of the recorded cells. B, Monotonic increasing, monotonic 

saturating, non-modulated and selective single cell examples. Mean firing rate (sp/s) is plotted as a 

function of % Michelson contrast. Each point represents the average of ≥12 stimulus presentations, 

along with its s.e.m. (vertical lines). Solid lines depict the best fitted curve provided by the Peirce 

equation. s represents the value of the suppressive exponent given by the fitting procedures; note 

that this value is subsequently used to label cells as monotonic (s ≤ 1.1) or selective (s > 1.1; see 

text). 
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Figure 3 Population and subpopulation properties of CRFs. A, Population. The panels show the 

distribution of the suppressive parameter (s), as given by each fitted Peirce function (median 

explained variance 91.4%), and the percentage (%) of suppression for each CRF, as derived from 

the Peirce function; the parameters are reported for all the well fitted neurons. The vertical dotted 

lines represent the average value of the depicted parameter. The light blue shaded area highlights 

the cells considered to be selective for contrast (s > 1.1). B, Parameter distribution for monotonic 

cells. The panels represent the distributions of C50, expressed in % Michelson contrast, and slope for 

the population of monotonic cells (s ≤ 1.1). Conventions as in panel A. C, Parameter distribution for 

selective cells. The panels represent the distributions of peak contrast and full bandwidth for the 

population of selective cells (s > 1.1), expressed in % Michelson contrast and log-units, 

respectively. Note that the bandwidth is reported for the selective cells showing at least 25% of 

inhibition (see Materials and Methods, Fitting procedures). Conventions as in panel A. 
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Figure 4 Consistency of classification of monotonic and selective CRFs. A, Peirce vs. Gaussian 

function. The scatter plot depicts AIC values for the Gaussian function and the Peirce function fitted 

to the cells classified as selective for contrast according to the suppressive exponent (s) of the Peirce 

function (see Results, Heterogeneous contrast response functions in V4). Each data point represents 

a fitted neuron. The color of each point depicts the posterior probability to belong to one or the 

other of the two models; black dots represent the two neurons shown in panel B. Note that the lower 

the AIC value, the better is the fitting. B, Non-monotonic single cell examples. Responses of two 

representative V4 neurons to bars of different contrast are shown. Mean firing rate (sp/s) is 

calculated in a 100 ms time window starting at 40 ms post-stimulus onset and is plotted as a 

function of % Michelson contrast. Each point represents the average of ≥12 stimulus presentations; 

the value of the suppressive exponent (s) calculated by fitting the Peirce function is reported for 

each cell. Lines depict the best fitted curve provided by the Peirce equation (dashed line) and the 
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Gaussian equation (solid line). Note that the selected examples are two of the most extreme cases 

(more distant from the diagonal) in the scatter plot (panel A). C, Gaussian vs. Naka-Rushton 

function. The scatter plot depicts AIC values for the Naka-Rushton function and the Gaussian 

function (convention as in A); black dots represent the two neurons shown in panel D. Note that low 

values of AIC indicate that the regression line properly fits the data. D, Monotonic saturating vs. 

non-monotonic single cell examples. Responses of two representative V4 neurons (reported in black 

in panel C) are shown (conventions as in B). Lines depict the best fitted curve provided by the 

Gaussian equation (solid line) and the Naka-Rushton equation (dashed line). 
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Figure 5 Population responses over time. Population PSTH for the preferred orientation is 

represented for each contrast level, aligned with stimulus onset (increasingly darker lines correspond 

to progressively higher contrasts). A, Average normalized PSTH for the entire population of recorded 

cells. B, Population PSTH for selective cells. C, Population PSTH for selective cells showing peak 

responses at low contrast levels (<20% Michelson contrast). Note that, for illustration purposes, 40ms 

bin width has been used throughout. As indicated by the leftward shift of the PSTH, average latency 

decreased significantly as contrast increased, and this was true regardless of whether we considered 

the entire population of recorded neurons (F(6) = 126.82), the entire population of selective cells 

(F(6)=40.6), or the subpopulation of selective cells having a peak for < 20% contrast (F(6)=9.21), p 

<< 0.01, 1w-ANOVA). 
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Figure 6 Changes in non-monotonicity over time. A, Average MI as a function of time, time-locked 

to stimulus onset. MI, calculated in 20ms time windows shifted by 1ms and averaged across the 

population, is plotted as a function of time for both the preferred (solid line) and unpreferred (dotted 

line) orientation. The population average Orientation preference Index (see Materials and Methods, 

Analysis of temporal dynamics) as a function of time is reported in red. Note that critical patterns for 

the two indices are coincident in time. B, Average MI over time, time-locked to response onset 

(conventions as in a). The light blue shaded areas represent the two 50ms time windows of maximal 

interest. C, Average MI over time for cells showing increasing or decreasing monotonicity. MI over 

time is reported separately for the subpopulation of cells with decreasing monotonicity (n=209, solid 

line) and the subpopulation of cells with increasing monotonicity (n=95, dotted line) as calculated 

from the comparison between the time windows of maximal interest. D-F, Single cell examples. 

Average firing rate (sp/s) of three representative neurons plotted as a function of contrast and time for 

16 overlapping time epochs (50 ms width, 10 ms shift); surface color turns from blue to red for 

progressively higher discharge rate. Note that, with reference to panel C, single examples in D and E 

belong to the subpopulation of cells showing increasing non-monotonicity over time, while the 
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example in F belongs to the subpopulation of cells with modestly decreasing non-monotonicity over 

time. 
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Figure 7 Changes in the shape of CRFs, early vs. late windows. A, Entire population. In the left 

panel, the binomial distribution of the suppressive parameter (s) of well fitted neurons is shown 

separately for the early (in blue) and late (in yellow) time windows. The right panel represents the 

percentage (%) of suppression of each well fitted CRF. The percentage of suppression increased 

significantly (p << 0.01, two-tailed, paired t-test) from an average value of 16% to 38%. B, Stably 

monotonic CRFs. The distributions of C50 (left panel) and slope (right panel) for the population of 
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stably monotonic CRFs (s ≤ 1.1) is shown, separately for the early and late windows (conventions 

as in A). The blue and yellow vertical dotted lines represent the average C50 and slope for the early 

and late windows, respectively. C50 did not change significantly (p = 0.16, two-tailed, paired t-test), 

while the slope increased significantly (p << 0.01, two-tailed, paired t-test). C, Stably selective 

cells. The distributions of peak contrast (left panel) and bandwidth (right panel) for the population 

of stably selective cells (s>1.1) is shown, separately for the early and late windows (conventions as 

in A). Peak contrast did not change significantly (p = 0.72, two-tailed, paired t-test), while the 

bandwidth was significantly reduced in the later window (p << 0.01, two-tailed, paired t-test). D, 

Single cell examples. Responses of four representative V4 neurons to bars of different contrast are 

shown. Mean firing rate (sp/s) is plotted as a function of % Michelson contrast for the early (in 

blue) and late windows (in yellow), along with the best fitted curve provided by the Peirce function 

(solid lines). 
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Figure 8 Filtering properties in late epochs. Normalized responses (i.e., response – baseline, 

divided by the maximal response) of example neurons in the late time window (100-150 ms). The 

left panel shows a set of ten neurons showing a monotonic CRF, as described by the Peirce equation 

(s ≤ 1.1); note that most of the functions saturate or show some degree of supersaturation. The right 

panel shows a set of ten neurons characterized by a selective CRF, as described by the Peirce 

equation (s > 1.1); note that different neurons are selective for different contrast levels. For the sake 

of clarity, response functions are drawn in alternating colors along the contrast axis. 
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Figure 9 Contrast selectivity and eccentricity. The scatter plot depicts the RF center position within 

the visual field for all recorded neurons. Each cell was fitted by the Peirce function and classified as 

monotonic or selective according to the value of the suppressive exponent (see Results, 

Heterogeneous contrast response functions in V4 and Fig. 3A). Gray and black dots correspond to 

neurons showing a monotonic or selective CRF, respectively. For the sake of visibility, neurons 

recorded at the same site are shifted by 0.05°. Note that contrast selectivity occurred at all levels of 

eccentricity, ranging from 2.53° to 9.11°. The number and the percentage of selective cells within 

each sector are reported. 

 

  



 46 

Table 1. 

(n=332) Suppressive 
exponent 

AIC BIC Adj-R
2 χN

2 

 M NM M NM M NM M NM M NM 

Number of cells 227 105 263 69 267 65 164 168 210 122 

Percentage of cells 68 32 79 21 80 20 49 51 63 37 

 

Table 1 Model comparison and cell classification: consideration over the proportion of cells 

showing non-monotonic tuning for contrast. In the table, we report the number and percentage of 

cells classified as monotonic (M) and non-monotonic (NM) based on the suppressive exponent 

value and other classification approaches based on the evaluation of the goodness-of-fit corrected 

for the number of parameters in the model (see also Materials and Methods, Model comparison). 

 


