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Introduction

Our perception of the world depends not only on the 
incoming sensory information, but it is also influenced 
by our prior knowledge. This phenomenon traces back 
to Helmholtz, who introduced the concept of uncon-
scious inference, which helps to shape vision (Helm-
holtz 1866). Incorporating previous experience, or pri-
ors, into the current percept helps the brain cope with 
the uncertainty resulting from sensory and neural noise, 
and ambiguity (e.g., the mapping of 3D objects into two-
dimensional images, Knill and Pouget 2004). The use 
of priors improves the reliability of perception, reduc-
ing the overall noise. It is often considered to reflect a 
statistically optimal computation, which can be modeled 
by Bayesian techniques (Weiss et al. 2002; Kersten and 
Yuille 2003).

Use of priors has been recently suggested to be at the 
basis of the well-known phenomenon of central tendency 
(Jazayeri and Shadlen 2010). Judgments of almost all 
quantities (such as length, duration, number, and color) 
tend to gravitate toward their mean magnitude, thus 
implying that on any range of values the lower end of 
the range will be overestimated and the higher end will 
be underestimated (Hollingworth 1910). These biases in 
magnitude estimation occur with everybody and become 
more exaggerated in neglect patients in a wide array of 
perceptual continua and across multiple modalities (vis-
ual, auditory, proprioceptive, tactile and even gustatory, 
Mennemeier et al. 2005). Recent works indicate that this 
phenomenon can be modeled within a Bayesian frame-
work, where the mean magnitude of the stimulus history 
can be described as a prior, biasing the judgments toward 
the average (Jazayeri and Shadlen 2010; Cicchini et al. 
2012). These authors, who studied the reproduction of 
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time intervals, showed that the estimate of a sample dura-
tion differed depending on the distribution from which it 
was drawn; so the same time interval was reproduced as 
longer if on average stimuli lasted longer, and as shorter 
if on average previous stimuli were shorter (Jazayeri and 
Shadlen 2010). Single judgments were therefore inac-
curate, as they did not reproduce exactly the current 
stimulus duration. Nonetheless, the increased reliability 
associated with this strategy led to an overall reduction 
in the error magnitude, showing that the use of priors 
can serve as a filter, smoothing variations in the sensory 
input, which are often due to noise and hinder stable 
perceptions.

Although central tendency is universal in adult per-
ceptual judgments, how this strategy develops with age 
remains unknown. While many sensory aspects develop 
early, within the first years of age (e.g., Atkinson 2000; 
Streri 2003), many others develop later in life, during 
school years (e.g., Morrongiello et al. 1994; Rentschler 
et al. 2004; Gori et al. 2008, 2012a). Therefore, a strat-
egy aimed at minimizing total error in sensory judgments 
could be particularly beneficial for children. On the other 
hand, for the developing brain, it could be fundamental to 
formulate estimations as veridical as possible, so that—
by trial and the feedback of the error—children could 
develop the ability to produce accurate judgments. Thus, 
a Bayesian model aimed at minimizing the total error at 
the expense of accuracy, although theoretically optimal 
in reducing error, may be detrimental in childhood. For 
example, cross-sensory fusion based on statistically opti-
mal integration strategies develops late (at 8–10 years 
of age). Before then, children base their estimates on 
one sense rather than on the fused output. The authors 
speculate that this may not be the more precise, but the 
more robust (Gori et al. 2008). This strategy—which is 
sub-optimal in Bayesian terms—has been suggested to 
be useful for cross-sensory calibration (Burr and Gori 
2011).

In this study, we measured the development of central 
tendency in a spatial task by assessing precision and accu-
racy of the reproduction of a perceived length. We asked 
children ranging from 7 to 14 years of age and adults to 
reproduce lengths drawn from different distributions and 
evaluated whether judgments were influenced by previous 
stimulus history. We separately estimated the precision of 
length discrimination, to assess whether the central ten-
dency strategy correlated with sensory precision during 
development. All the data were modeled within a Bayesian 
context, using techniques similar to those of Cicchini et al. 
(2012). The analysis was conducted to ascertain which rel-
ative weighting of prior and sensory input was consistent 
with the data, if observers used an optimal reliability-based 
weighting strategy.

Materials and Methods

Subjects

Eighty-two children aged 7–14 years from elementary and 
middle schools in Genoa (Italy) and 6 adults, recruited 
from the local university took part in the study. Nineteen 
participants were excluded from analysis (eight 7-year-
olds, seven 8-year-olds, three 10-year-olds and one 11-year 
old) on the basis of two criteria: a spatial discrimination 
threshold larger than 75 % of maximum variation of stimu-
lus length tested in a single session (i.e., spatial discrimina-
tion threshold measured in the Length discrimination over 
6 cm) or the inability to perform the task. This latter con-
dition was verified when one participant reproduced with 
<5 cm difference the two extreme amplitudes presented in 
the experiment—2 and 14 cm—or when the regression of 
reproduced lengths over stimulus lengths exhibited a nega-
tive slope. This high selection criterion was chosen to avoid 
the inclusion in the sample of subjects who showed diffi-
culty in performing the task, or in maintaining attention for 
the relatively long periods required.

The remaining sample therefore comprised 65 chil-
dren: 7 seven-year-olds (6.7 ± 0.5 years, mean ± SD), 
9 eight-year-olds (7.9 ± 0.6 years), 15 ten-year-olds 
(9.9 ± 0.4 years), 18 eleven-year-olds (11.4 ± 0.6 years), 
16 thirteen-year-olds (13.3 ± 0.6 years) and 6 adults 
(29.8 ± 7.1 years). Children were compensated with a €10 
bookstore coupon for their participation. All subjects had 
normal or corrected to normal visual acuity. All participants 
gave written informed consent prior to testing, and the 
study was approved by the local ethics committee (Azienda 
Sanitaria Locale Genovese N.3).

Stimuli

The experiments were performed in a dimly lit room. Vis-
ual stimuli were presented on a LG FLATRON L1730 SF 
Touchscreen (screen dimension: 398 × 402 mm; screen 
resolution: 1,280 × 1,024 pixels). Subjects were seated 
in front of the screen, with their head aligned with screen 
center and with the shoulder at a distance corresponding 
to 60 % of their extended arm length. This position was 
chosen to allow each participant to comfortably reach the 
touch screen. The visual stimuli were created with the 
MATLAB Psychophysics Toolbox (Brainard 1997; Kleiner 
et al. 2007). Subject responses were collected through the 
touch screen connected via USB to the laptop.

Procedure

The experiment comprised two different tasks: length 
reproduction, measuring central tendency in estimates of 
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lengths at different ages; length discrimination, designed to 
measure the perceptual precision of length judgments.

Length reproduction

On each trial, subjects were presented with two consec-
utive light flashes (red disks of 1 cm diameter, duration 
400 ms) positioned along a visible straight white line 
crossing the whole screen at its central height. The first 
flash was positioned at a variable distance from the left 
border of the screen (0.5–3.5 cm, randomly selected). 
On its disappearance, a second disk appeared at a vari-
able distance to the right of it, disappearing after 400 ms. 
Subjects were requested to touch a point on the straight 
line in order to reproduce the distance between the first 
and the second disk of the stimulation (Fig. 1a). After the 
pressure, a red disk came on to indicate where the sub-
ject had touched, but no feedback about the correctness of 

the response was provided. Each new trial started on the 
experimenter’s button press, with the first light appearing 
after 500 ms. Each subject participated in two sessions: 
a Short condition, in which the spatial distance between 
the two first disks ranged from 0.2 to 10 cm, and a Long 
condition, in which the distances presented ranged from 
6 to 14 cm (Fig. 1b). The order of the sessions was ran-
domized between subjects. Each session was character-
ized by 11 different sample intervals (separated by 0.8 cm 
each), each of which was presented 7 times, yielding to a 
total of 77 trials per subject per condition. The duration of 
each session was about 30 min (1 h for both conditions). 
We chose to keep the order of disk appearance constant to 
keep the task as simple as possible for the youngest age 
group. The Short and Long sessions were measured for 
each subject in two separate days, to avoid any influence 
of the exposure to different stimulus distributions in the 
same day.

Fig. 1  Experimental methods. a Sketch of the Length reproduction 
experimental procedure: On each trial, subjects were presented with 
two subsequent flashes of light positioned along a visible straight 
white line crossing the whole screen at its middle height. After the 
disappearance of the second flash, subjects were requested to touch 
a point on the straight line, so that the distance between the touched 
point from the second disk of the stimulation were equal to the dis-
tance between the first and the second disk. b Probability distribution 
of stimulus lengths (L) in the Long and Short experimental sessions. c 
Schema of the possible results of the Length reproduction task. For an 
accurate reproduction, length estimates would lie on the bisector line 

(identity line) and reproductions of the same stimulus length belong-
ing to the two different contexts (Long and Short) would be superim-
posed. A central tendency would imply a flatter line describing the 
regression of estimates over presented lengths, and a difference in 
the reproduction of a stimulus as a function of stimulus context. The 
Gaussian on the right represents a distribution of reproductions for a 
single stimulus length. The average error in the reproduction is par-
titioned into Bias (difference between the average reproduction and 
real stimulus length) and variability (SD, standard deviation of all the 
reproductions for that stimulus). Both indicators will be divided by 
average stimulus length (see “Methods” section for more details)
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Length discrimination

A length discrimination task was designed to evaluate the 
precision of visual space perception. The visual stimuli 
were the same as those used in the length reproduction 
task: Red disks of 1 cm diameter positioned along a white 
straight line crossing the screen at its central height. The 
experimenter initiated each trial by pressing a button. After 
500 ms, three red disks were presented simultaneously for 
400 ms in different positions along the line. After stimu-
lus disappearance, subjects had to judge whether the sec-
ond disk was closer to the first or the third disk. One of 
the two distances—chosen randomly on each trial—main-
tained always the same length (standard), while the other—
the comparison—changed from trial to trial according to 
a QUEST adaptive procedure [starting value: 9 ± 1.8 cm 
(SD), step size: 2 mm; range 16.2 cm; β: 3.5; δ: 0.01; γ: 0; 
threshold criterion: 0.5; additional noise: 20 %: Watson and 
Pelli (1983)]. This design was selected after some pilot-
ing because it represented a very simple measure of length 
discrimination, where priors could not influence perfor-
mance. The proportion of times in which the comparison 
interval was judged longer than the standard was plotted as 
a function of comparison amplitude and fit by a cumula-
tive Gaussian distribution. Mean and standard deviation of 
the fit provided the point of subjective equality (PSE) and a 
bias-free estimate of precision, respectively. Standard errors 
for the PSE and the precisions were obtained by bootstrap-
ping (Efron and Tibshirani 1993). In this task, we also ran 
two separate conditions in separate sessions: the Short con-
dition, with the standard distance fixed at 6 cm (the average 
of the stimulus length presented in the Short reproduction 
session), and a Long condition, with the standard inter-
val fixed at 10 cm (corresponding to the average stimulus 
interval of the LONG reproduction task). Forty trials per 
condition were collected for each subject. The Weber frac-
tion was computed for each session as the ratio between the 
measured precision and the average length of the stimuli in 
that session.

Data analysis

As in Cicchini et al. (2012) and Jazayeri and Shadlen 
(2010), we partitioned the total error of the reproduction 
tasks into two parts: the bias, corresponding to the accu-
racy of the reproduction, and the coefficient of variation 
(CV: standard deviation divided by the average stimulus 
length), indicating the precision of the reproduction (see 
SD in Fig. 1c). To compute these two indicators, we first 
subtracted from each reproduced distance the average 
reproduced distance for all the trials (R̄c) and summed the 
central stimulus distance S̄, to remove any constant biases 
(rather than regression toward the mean):

where Ri,n represents the reproduced distance for the n-th 
repetition of the interval stimulus i.

The bias, for each i-th stimulus value, corresponds to the 
difference between the average produced distance and the 
sample distance, normalized by the average length of the 
stimuli in a session:

CV is given by the standard deviation of the N repro-
duced distances for each i-th stimulus distance, again nor-
malized by average stimulus distance in that session:

The total error for each i-th sample stimulus is given by 
the Pythagorean sum of bias and CV for that stimulus:

As a direct measure of central tendency, the regression 
index was computed as the difference in slope between the 
best linear fit of the reproduced lengths and the identity 
line. This index varies from 0 (veridical performance) to 1 
(complete regression to the mean). Regression index val-
ues were tested for significance with respect to 0 with one-
sample t tests. To assess potential developmental changes 
in perceptual strategies, all performance parameters have 
been submitted to one-way ANOVAs, followed by Bonfer-
roni post hoc tests. The analyses were computed after aver-
aging, for each subject, the results from the Short and the 
Long sessions.

Bayesian modeling

The central tendency has been modeled as a way to increase 
the consistency of the perceptual estimations by biasing 
the response toward the mean of the previously perceived 
stimuli. This approach reduces the accuracy of the reproduc-
tion, but also diminishes the variability associated with the 
response, a strategy that for noisy sensory estimations (low 
sensory precision) optimizes reproduction performances, 
reducing the total error (Jazayeri and Shadlen 2010). This 
fundamental principle may be modeled in Bayesian terms, 
where every stimulus reproduction includes an estimate 
of the statistics of the previously presented stimuli (Jazay-
eri and Shadlen 2010; Cicchini et al. 2012). The Bayesian 
model is illustrated in Fig. 2a. Within this framework, to esti-
mate stimulus amplitude, the observer combines two sources 
of information: the current noisy estimate of stimulus length 

(1)R
′
i,n = Ri,n − R̄c + S̄

(2)BIASi =

∣
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and prior knowledge about the stimuli distribution (an 
approximation of its statistics). In Bayesian terms, these two 
elements correspond to the likelihood function (represented 
by a Gaussian distribution centered at the current stimulus 
length, with standard deviation corresponding to the sub-
jects’ sensory precision) and the prior probability distribu-
tion function (also approximated by a Gaussian distribution 
centered on the average stimulus of the session). According 
to this model, given a certain prior amplitude, the more par-
ticipants are precise in their sensory estimate (lower Weber 
and hence narrower likelihood) the more their reproduction 
will mimic sensory information. If instead, sensory preci-
sion is low (likelihood larger than prior), then reproduction 
will be more similar to the prior (see Fig. 2b), with a larger 
regression toward the mean appearing.

In mathematical terms, assuming that both the prior and 
likelihood function are Gaussians with mean and stand-
ard deviations (µP, σP) and (µL , σL) and given a stimulus 
length Si, the prior will be centered on the average stimu-
lus of that condition (µP = S̄) and the likelihood function 
will be centered on the measurement of the stimulus length 
(μL = Si). According to Bayes’ rule, the posterior distribu-
tion is a Gaussian centered at:

(5)
µR = µL −

σ 2
L
(µL − µP)

σ 2
L

+ σ 2
P

with variance:

which corresponds to the variance of an observer who esti-
mates stimulus length as the maximum of the posterior. 
Note that σR is by construction always smaller than σL and 
σP.

Pooling across trials with stimuli of length Si, the 
observer bias can be computed as:

Which can be extended to a range of spatial stimuli 
(rather than the single stimulus length) as follows:

It is worth noting that this “ideal observer” analysis 
relies on observers using an optimal (reliability weighted) 
averaging strategy for sensory and prior information. We 
cannot tell whether such optimal integration is actually 
adopted by children, but, assuming this is the case, our 

(6)σ 2
R

=
σ 2

L
σ 2

P

σ 2
L

+ σ 2
P

= VAR_OBS

BIAS_OBS_Si =
σ 2

L
(Si − S̄)

σ 2
L

+ σ 2
P

.

(7)BIAS_OBS =
σ 2

L

√

∑

i
(Si−S̄)2

N

σ 2
L

+ σ 2
P

.

Fig. 2  Illustration of the Bayesian Gaussian prior model (modified 
from Cicchini et al. (2012)) and its implication of the regression of 
estimates over real stimulus length (insets). The likelihood function 
for the current stimulus is modeled by a Gaussian centered on the 
current stimulus and with a width corresponding to subjects’ sensory 

precision, while the prior is represented by a Gaussian probability 
density function derived from past trials, and hence centered on the 
average of the stimuli in the session. Panels b and c show two alterna-
tive effects of a reduced sensory precision as a function of prior width
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analysis was aimed at deriving which levels of prior vari-
ance would be consistent with the data.

Results

Figure 3 shows the length reproduction for all subjects 
of each different age ranges, separately for the Short 
(magenta) and Long (green) interval ranges. These graphs 
clearly show that the phenomenon of central tendency 
occurs for space perception, at all ages: The average repro-
duced lengths (larger dots) are not equal to the real stimu-
lus amplitude, as they do not lie on the identity line, but 
tend toward the average stimulus length for a particular ses-
sion (6 and 10 cm for the magenta and green data points, 
respectively). The reproduced amplitudes have shallower 
slope than the identity line.

An important consequence of regression toward the 
mean is that the same interval will be reproduced differ-
ently depending on which distribution it was drawn from. 
The green and magenta dots for lengths are not superim-
posed between 6 and 10 cm: The same length is repro-
duced as longer when sampled from the long distribution 
(10 cm, green) compared with the Short distribution (6 cm, 
magenta). This phenomenon is more clearly depicted in 
Fig. 4, which shows that the distribution of the reproduc-
tion of the 8.4 cm stimulus amplitude depends strongly 
on the sample range it was drawn from, with shorter mean 
amplitude for stimulus drawn from the Short session 
(magenta) and larger mean amplitude for the Long ses-
sion (green). Interestingly, all tested age groups showed 
a tendency to regress toward the mean of the stimulus. 
At all ages, the regression index was significantly dif-
ferent from 0 (p < 0.01 in one-sample t tests), and did 

Fig. 3  Length estimates plotted as a function of real stimulus length 
for the different age group tested (different subplots). Small dots rep-
resent single estimates, while larger dots represent population aver-
age estimate for the stimulus. Magenta refers to results of the Short 

session, green to those for the Long session. Dashed black lines indi-
cated the identity line; continuous magenta/green lines represent lin-
ear fits of the data of the Short and Long sessions, respectively (color 
figure online)

Author's personal copy



3971Exp Brain Res (2014) 232:3965–3976 

1 3

not vary significantly with age (one-way ANOVA, F(5, 
65) = 1.05, p = 0.397), slightly decreasing from 7 years 
on, but always remaining around 0.36 ± 0.06 (SD). Regres-
sion indexes were as follows: 0.44 ± 0.23 for the 7-year-
olds, 0.40 ± 0.14 for the 8-year-olds, 0.31 ± 0.20 for the 
10-year-olds, 0.35 ± 0.10 for the 11-year-olds, 0.29 ± 0.20 
for the 13-year-olds and 0.35 ± 0.20 for the adults.

To assess whether subjects modified their tendency to 
regress toward the mean over the course of the experiment, 
a split-half analysis of the regression index was conducted 
on the Long session. Figure 5 clearly shows that children 
at all ages exhibit a similar significant increase in the 
regression index over the session, as confirmed by a two-
way mixed-model ANOVA (between factor: “age”; within 
factor: “experimental phase,” with two levels: first half, 
second half. Significant effect of “experimental phase”: 
F(1, 65) = 7.11, p < 0.01; not significant effect of “age” 
or of the interaction: F(5, 65) = 1.14, p = 0.35 and F(5, 
65) = 0.94, p = 0.46, respectively). Although not statisti-
cally significant, adults seem to represent an exception to 
this pattern, as their regression index is similar between the 
two halves of the task.

Separately, we obtained an estimate of spatial precision 
using a bisection task, where priors should not influence 
performance. Subjects reported whether the central flash of 

a simultaneous triplet was spatially closer to the leftmost 
or the rightmost one, leading to an estimate of the relative 
precision of length judgment (Weber fraction). The average 
Weber fraction decreases (precision increases) substantially 
with age, with a significant reduction between the fraction 

Fig. 4  Distributions of the reproductions of the 8.4 cm length, as a function of stimulus context (Short – magenta, Long – green) and age group 
(different subplots) (color figure online)

Fig. 5  Average regression index as a function of age in a split-half 
analysis of the data in the “Long” session. Different symbols indicate 
the two halves of the session: Circles represent the regression index 
computed on the first half, while squares refer to the second half of 
the session. Error bars represent standard errors of the mean

Author's personal copy



3972 Exp Brain Res (2014) 232:3965–3976

1 3

measured for the two youngest groups and that assessed in 
adults [F(5,65) = 3.407, p < 0.01 in a one-way ANOVA 
followed by Bonferroni post hoc test, see gray line and 
symbols in Fig. 6].

A clear developmental trend was also present in the 
reproduction task, quantified as the total error (RMSE) nor-
malized by average length. Figure 6 (black line and trian-
gles) shows that the average error decreased significantly 
with age, dropping from about 35 % at 7 years of age to 
about 21 % in adulthood. One-way ANOVA followed 
by a Bonferroni post hoc test showed a significant drop 
in error between 7 and 8 years, and all the older groups 
[F(5,65) = 11.379, p < 0.001].

Partitioning the error, we could evaluate whether the 
developmental trend was mainly due to a change in the 
accuracy of the reproduction (bias) or in precision (coeffi-
cient of variation). For all the ages tested, the ratio between 
the two error components was approximately constant 
[one-way ANOVA, F(5,65) = 0.85 p = 0.519], with CV 
being on average 1.577 ± 0.15 (SD) times the bias (see the 
almost constant angle subtending all symbols in Fig. 7). 
Therefore, it seems that the perceptual strategy adopted in 
length reproduction does not substantially change during 
childhood.

More specifically, we have shown that children show 
central tendency at all the ages tested (see Figs. 3, 4). 
Hence, already from 7 years of age, humans base their 
judgments not only on their current perception, but also 
on the average of the previously presented stimuli (or the 
prior). Moreover, the almost constant ratio between inaccu-
racy (or bias) and variability (CV) in determining total error 
during childhood suggests that children give proportionally 
the same weight to the prior as adults do. This would imply 
that the prior width changes during development, in paral-
lel with the increase in sensory precision. Actually, the rel-
evance given to the stimulus average depends, according to 
a Bayesian model, on the relative width of the likelihood 
function (here represented by individual Weber fractions) 
and the prior (see modeling in the Methods section and 
Fig. 2 for more details). During development, the Weber 
fraction diminishes substantially, becoming in adults about 
one-third of that of 7-year-olds (see Fig. 6).

To evaluate the potential change of prior width, in 
Fig. 8a, we have plotted the regression indexes for the 
different age groups measured in the Long condition as a 
function of their sensory precision (Weber fraction) and in 
Fig. 8b, the corresponding bias and coefficient of variation. 
In both graphs, we have added the predictions formulated 

Fig. 6  Average Weber fraction computed from the length discrimina-
tion task (gray line and symbols) and average total error computed for 
the length reproduction task (black line and symbols—see Eq. 4) as 
a function of age. Error bars represent standard errors of the mean. 
Stars indicate significant difference (p < 0.05) in a one-way ANOVA 
followed by Bonferroni post hoc

Fig. 7  Partitioning the error. a Coefficient of variation of the repro-
ductions (CV, Eq. 3) plotted against bias (difference between average 
reproduced length and physical sample length, Eq. 2) for the different 
age groups. The total error (root mean squared error, Eq. 4) is given 

by the distance from the origin. Error bars represent group standard 
errors of the mean. b Average polar angle between bias and coeffi-
cient of variation of the reproductions as a function of age. Error bars 
represent standard errors of the mean
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for different prior widths (black lines). Our results seem 
compatible with the hypothesis of a prior width undergo-
ing a development similar to that observed for sensory 
precision, yielding an almost constant proportion between 
prior and likelihood amplitude. Indeed, looking at Fig. 8, 
it emerges that models with a decreasing prior width (see 
lines corresponding to priors from 3 to 1 cm) progressively 
approximate better the regression indexes (Fig. 8a) and 
the error components (Fig. 8b) of the different age groups 
(large filled circles). Therefore, already at 7 years of age, 
the relative weighting of sensory information and prior is 
similar to that measured in adults.

Discussion

Our experiments show that the central tendency mechanism 
is already active during childhood, at least from 7 years of 
age on. Indeed, participants at all the ages tested tended 
to reproduce the presented length differently as a function 
of the previous stimuli history: The same stimulus length 
was reproduced as shorter, when on average stimuli were 
short and as longer, when average stimuli were long. We 
have provided evidence that this strategy, which reduces 
the variability of the responses at the expenses of accuracy 
and reflects a Bayesian optimization principle (Jazayeri and 
Shadlen 2010; Cicchini et al. 2012), is adopted since early 
childhood.

It is well known that children can encode the statistical 
properties of the world. Evidence exists that even young 
infants show statistical learning, the ability to extract the 
statistical structure of the sensory inputs (Bulf et al. 2011). 
For instance, 5-month-old infants are sensitive to statisti-
cal information of colors and shapes (Kirkham et al. 2002), 

8-month-old infants can compute statistics in spatiotem-
poral visual sequences (Kirkham et al. 2007) and exploit 
the statistical relations to segment continuous speech into 
words (Saffran et al. 1996). Slightly older infants (9-month-
olds) encode the statistical structure of scenes constituted 
by multiple elements, being sensitive not only to the fre-
quency of co-occurrence of different objects, but also to the 
predictability between elements, i.e., to their conditional 
probability relations (Fiser and Aslin 2002). Hence, even 
during the first year of life, infants can take advantage of 
the regularities in the environment to help their understand-
ing of complex stimuli. This ability can be traced back, at 
least partially, even to newborns, as neonates can learn the 
statistical structure of a visual sequence of discrete shapes 
(Bulf et al. 2011) or of a linguistic stimulus (Teinonen et al. 
2009).

However, children do not always exploit statistics as 
adults do. During childhood, children show a significant 
physical and sensory development, which requires continu-
ous motor and perceptual re-calibration. For example, the 
association between perceptions and the true object char-
acteristics needs to be learned and recalibrated as various 
aspects of the body (such as limb size and inter-ocular dis-
tances) change (Gori et al. 2008). In this phase, the veridi-
cality of an estimate plays a fundamental role, to allow for 
the development of an accurate representation of the real 
world. Hence, during such a calibration process, the pre-
cision of the estimate (the variability associated with the 
perception) could be considered less relevant, inducing 
children to base their perceptual judgments on their sensory 
input without relying on statistically optimal integration 
strategies. This is what happens, for instance, with sensory 
cue integration. In adults, cues from different modalities 
(e.g., vision and touch or sound, Ernst and Banks 2002; 

Fig. 8  Model simulations. a Regression index plotted against Weber 
fraction and b coefficient of variation plotted against bias for the data 
in the Long session. Small circles are individual subjects; large cir-
cles are group averages for different ages (same color code as Fig. 7). 
The black curves show the Bayesian model predictions for a prior of 

fixed width of 1, 2 and 3 and assuming a fixed additive motor noise 
approximated as Gaussian, with 1.2 cm width (selected to fit adults 
average data). Each curve was created by varying sensory Weber frac-
tion from 0.01 to 0.6
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Alais and Burr 2004) or even from within the same modal-
ity (e.g., visual cues as stereo and texture, Jacobs 1999; 
Knill and Saunders 2003) are integrated in an optimal fash-
ion, well modeled in a Bayesian framework. This strategy 
privileges, among the multiple sources of information, the 
more precise sensory cue. However, children use multi-
sensory information in a substantially different way from 
adults (Gori et al. 2008; Nardini et al. 2008). This has been, 
for instance, demonstrated for visuo-haptic size percep-
tion, where until 8–10 years of age children’s estimate is 
not based on the more precise (i.e., less variable) sense, 
but seems to reflect a haptic dominance (Gori et al. 2008). 
Children would therefore rely on the more accurate signal 
(haptic), which acts as a calibrator for the other senses. This 
interpretation has recently found further support in studies 
conducted on patient populations, where the absence of the 
“calibrator modality” during childhood (e.g., of the haptic 
sense for size perception) has determined impairments in 
estimates performed also with other modalities (e.g., visual 
size estimates) (Gori et al. 2010, 2012b).

If a similar need for calibration had influenced the inte-
gration between current sensory inputs and prior knowl-
edge, we might not have expected the consistent regression 
to the mean that we have actually measured. On the con-
trary, the development of the incorporation of prior knowl-
edge in spatial judgments seems to occur early in child-
hood, being active already in 7-year-olds.

A question that can be raised is therefore why the 
development of central tendency occurs so early. A possi-
ble answer could be found in the relevance of this mecha-
nism—and more in general of a process incorporating prior 
knowledge in perception—for learning. The use of previous 
knowledge (or priors) is a fundamental tool to deal with the 
uncertainty associated with sensation, where the variability 
of the signal is often due to noise (neural or sensory) rather 
than to a real variation in the physical world (Knill and 
Pouget 2004). The inability to build and use prior knowl-
edge to filter out such noise could hinder the ability to learn 
and generalize sensory information, preventing the child to 
derive the “general trend” of the signal. A similar phenom-
enon, a low weighting given to the priors (or hypo-priors), 
has been recently suggested as a possible cause for several 
non-social symptoms of autism (Pellicano and Burr 2012). 
Even more importantly, the use of priors (or assumptions) 
becomes essential for perception in the case of ambiguous 
sensory inputs, where additional information is required 
to disambiguate incoming information. For instance, the 
univocal recovery of three-dimensional information from 
a two-dimensional retinal image is an ill-posed problem, 
as the same object when projected in two dimensions can 
yield to different images. It is just with additional assump-
tions (or priors) that images can be disambiguated. A com-
mon example is that of the “light-from-above” prior, where 

the unconscious assumption that objects are generally 
illuminated from above, makes us perceive shaded two-
dimensional images as three-dimensional objects, resolv-
ing the convex/concave ambiguity (Rittenhouse 1786; 
Brewster 1826). Similarly, we would not be able to catch a 
falling object, if we did not exploit an internal prior about 
the effects of gravitational force on its motion to anticipate 
object acceleration, which is not well perceived by our 
visual system (McIntyre et al. 2001). Therefore, the abil-
ity to encode the statistics of the environment and incorpo-
rate such “previous knowledge” for perception and learning 
could represent an essential trait to allow for the successive 
development of more complex perceptual and action skills.

How this previous knowledge is generated and how 
it changes during life are, however, still two open ques-
tions. Our findings address these interrogatives, suggest-
ing that their formation is characterized by two different 
time courses. On the one hand, a few minutes of training 
allows for the development of a new prior (i.e., the aver-
age amplitude of the presented stimuli), which then influ-
ences the immediate estimate of the length of other stimuli. 
The possibility to build (and use) new priors in 5–10 min is 
compatible with what has been recently observed for time 
perception in adults (Jazayeri and Shadlen 2010; Cicchini 
et al. 2012) and also with the finding that also existing pri-
ors (as the “light-from-above” one) can be altered by short 
training (Adams et al. 2004). On the other hand, the prior 
width, on which the relative weight of the prior in the total 
percept depends (if we assume that all observers follow a 
reliability-based optimal weighting strategy, see Bayesian 
modeling in the “Methods” section and Fig. 2), undergoes 
a change with age. In particular, the estimates measured 
for young children are compatible with a prior width much 
larger than that fitting adult data. Therefore, the absolute 
width of priors can change during development, yielding to 
an almost constant relative weighting as sensory precision 
improves.

It is important to note that in the present study, we cannot 
prove that children are using an optimal weighting strategy, 
because the optimal weights for prior and sensory inputs 
cannot be estimated as the variance of the prior distribution 
is unknown. The same data could alternatively be explained 
by a sub-optimal behavior (as, for instance, by a misweight-
ing, in which similar weights are given to prior and sensory 
information independently of their reliability). Our analy-
sis was aimed at deriving which levels of prior variance 
would be consistent with the data, if observers used an opti-
mal weighting strategy. Keeping this assumption in mind, 
the results show that with age, sensory precision increases 
(Weber fraction decreases), while relative reliance on the 
prior stays constant, a result consistent with performance 
at all ages being based on an optimally weighted average 
of sensory and prior information. This phenomenon can 
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be better described by two components: The development 
of the underlying statistical learning mechanism and the 
quality of sensory information available to build a prior. 
Indeed, perceptual precision in spatial perception signifi-
cantly improves with age, as shown by the reduction of the 
Weber fraction measured in the length discrimination task 
(see Fig. 6). Therefore, noisier sensory information would 
lead to a wider prior in younger children, while more pre-
cise perception would allow the construction of a tight prior. 
Thus, a potential interpretation of the observed develop-
mental trend is that the major limitation on the quality of 
the prior that can be acquired is the quality of the sensory 
information available. Hence, a possibility is that children 
are about as good at the statistical learning component of 
this task as adults, but are just receiving noisier information 
with which to build their prior on each trial.

A similar trend of change in prior width as a function 
of age has been recently pointed out by Stone (2011) for 
children between 4 and 11 years of age in the context of 
the “light-from-above” prior. As previously mentioned, 
adults tend to assume lighting comes from above to judge 
the convexity/concavity of a shaded image. This prior is 
apparently applied also by infants (at least for artificial 
stimuli, Granrud et al. 1985) and young children, from 3 to 
4 years of age (Yonas et al. 1979; Stone and Pascalis 2010). 
However, the propensity to assume that lights come from 
above (that is, the prior weight) gradually changes with age 
and shifts toward an adultlike prior value as children grow 
older (e.g., between 4 and 12 years, as reported by Thomas 
et al. (2010) for “polo-mint” stimuli). Our findings suggest 
that a similar developmental trend does not regard exclu-
sively the environmental priors, which could derive from 
our lifelong experience with the light coming from above 
us, or of the gravitational force field acting on our body. 
On the contrary, also the priors formed on a brief time 
scale on the basis of a specific stimulus history apparently 
undergo a progressive change with age. This way, a balance 
is maintained between sensory inflow and prior informa-
tion, by complementing a noisier perception in younger 
children with a weaker prior and a more precise sensory 
input in adulthood with a proportionally stronger one. Pre-
vious research in adults has shown that the adoption of this 
strategy is optimal in Bayesian terms, as it allows systems 
to compensate for reduced sensory resolution, minimizing 
total error in a temporal reproduction (Jazayeri and Shadlen 
2010; Cicchini et al. 2012). This strategy is apparently suc-
cessful in holding the sensory noise at bay for length repro-
duction, even during development, since children’s perfor-
mance reaches adult levels in our task by 10 years of age in 
terms of total error (see Fig. 6, black line).

An interesting question could be to investigate the time 
course of the statistical learning. As mentioned before, chil-
dren are very quick to acquire priors based on a few stimuli 

(as the lengths used in our experiment), but fairly slow to 
acquire priors based on stimuli that are constantly experi-
enced, such as the light-from-above. This difference sug-
gests the existence of separate learning mechanisms, one 
characterized by a rapid acquisition and a rapid forgetting 
of the information, and the other producing a long-lasting 
internalization of the prior, but requiring a much longer 
exposure to develop. Even considering the fastest phenom-
enon, how many stimuli should an individual perceive to 
be able to build a prior distribution and use it in his sub-
sequent estimations? Our results (see Fig. 5) indicate that 
for children, the prior can change already over the course 
of a short task (77 trials), acquiring progressively more rel-
evance between the first and the second half of experiment. 
Interestingly, we might speculate that such learning process 
is even faster for adults, who apparently learned the prior 
already early at the beginning of the experiment and did not 
modify it substantially between the first and the second half 
of the trials. Recent findings confirm that this process could 
be very fast, at least for the perception of number, with a 
weighted average just with the previous trial being enough 
to bias perception, even in children (Cicchini et al. 2014). It 
would be interesting to see if this also explains the effects 
of spatial context dependency in children.

A possible confound in this study could be represented 
by the fact that we did not account for the change in motor 
error that is potentially associated with development. 
However, an increased motor noise would be expected to 
raise reproduction variability, but would not substantially 
influence the central tendency (the bias and the regres-
sion index). In graphical terms, a larger motor noise would 
produce essentially an upward shift of the model lines in 
Fig. 8b (which are currently computed with a fixed motor 
noise approximated as a Gaussian with standard deviation 
of 1.2 cm), with no (or minor) impact on the model lines 
in Fig. 8a. Therefore, although the definition of a complete 
model of the reproductions would require a direct meas-
ure of motor noise, the conclusions that we draw from the 
current experiments do not depend on its exact knowledge 
and maintain their validity also assuming its decrease with 
increasing age.

As Helmholtz and Gregory argued long ago (Helmholtz 
1866; Gregory 1980), perception is a process of uncon-
scious inference, where prior knowledge has a fundamental 
influence on what we actually see. Here, we have shown 
that one aspect of this mechanism, central tendency (Hol-
lingworth 1910), is already active in young children. The 
performance of seven-year-olds is consistent with a strat-
egy that exploits an estimate of the stimulus history to bias 
perceptual judgments, in order to increase the reliability 
of the responses and reduce overall error. The early occur-
rence of influence of previous knowledge on the perception 
of even very simple stimuli (such as length or duration) 
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emphasizes how this mechanism is widespread already 
in the developing child. It is therefore a key issue for the 
future to understand how this mechanism is actually imple-
mented in the brain (see Fiser et al. 2010 for a review), and 
whether its dysfunction can account for the complex symp-
toms associated with neuropsychiatric conditions, as some 
authors suggest—e.g., for autism (Pellicano and Burr 2012)
or schizophrenia (Fletcher and Frith 2009).
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