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Abstract
In adults, motion perception is mediated by an extensive network of occipital, parietal, tem-

poral, and insular cortical areas. Little is known about the neural substrate of visual motion

in infants, although behavioural studies suggest that motion perception is rudimentary at

birth and matures steadily over the first few years. Here, by measuring Blood Oxygenated

Level Dependent (BOLD) responses to flow versus random-motion stimuli, we demonstrate

that the major cortical areas serving motion processing in adults are operative by 7 wk of

age. Resting-state correlations demonstrate adult-like functional connectivity between the

motion-selective associative areas, but not between primary cortex and temporo-occipital

and posterior-insular cortices. Taken together, the results suggest that the development of

motion perception may be limited by slow maturation of the subcortical input and of the cor-

tico-cortical connections. In addition they support the existence of independent input to pri-

mary (V1) and temporo-occipital (V5/MT+) cortices very early in life.

Author Summary

While it is known that the visual brain is immature at birth, there is little firm information
about the developmental timeline of the visual system in humans. Despite this, it is com-
monly assumed that the cortex matures slowly, with primary visual areas developing first,
followed by higher associative regions. Here we use fMRI in very young infants to show
that this isn’t the case. Adults are highly sensitive to moving objects, and to the spurious
flow projected on their retinas while they move in the environment. Flow perception is
mediated by an extensive network of areas involving primary and associative visual areas,
but also vestibular associative cortices that mediate the perception of body motion (vec-
tion). Our data demonstrate that this complex network of higher associative areas is estab-
lished and well developed by 7 wk of age, including the vestibular associative cortex.
Interestingly, the maturation of the primary visual cortex lags behind the higher associa-
tive cortex; this suggests the existence of independent cortical inputs to the primary and
the associative cortex at this stage of development, explaining why infants do not yet per-
ceive motion with the same sensitivity as adults.
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Introduction
The infant visual brain is immature at birth. To date there is no direct functional evidence
from awake infants showing how the various cortical areas of human visual cortex develop.
The available evidence suggests that infants are capable of discriminating motion-direction
soon after birth [1–3], and that sensitivity to global-motion continues to mature slowly over
the first 4–7 y in humans and 2–3 y in monkey [4–7]. The protracted development (after an
early emergence) of global-motion sensitivity is attributed to late maturation of higher-level
motion areas, such as temporo-occipital complex (V5/MT+) [2,8–12].

Previously it was hypothesized that the visual cortex develops in a hierarchical fashion with
higher-order areas developing later, driven by feed-forward projections from previously devel-
oped lower-order cortical areas [9,13]. There is also evidence that some aspects of motion pro-
cessing, such as the control of opto-kinetic eye movements (OKN), are limited by the
development of subcortical relative to cortical function [14]. Brisk monocular OKN responses
can be elicited in newborn infants, but only by motion in the temporal-to-nasal direction. Early
development of subcortical mechanisms (probably of the Nucleus of the Optical Tectum) may
mediate the eye-following response in this direction, while the directional sensitivity in the
nasal-to-temporal direction, emerging later at about 10 wk, may be mediated by cortical mech-
anisms [11,15]. Even more peripheral factors, such as photoreceptor efficiency or myelination,
may provide important constraints on some functional development. For example [16–18]
chromatic and achromatic contrast sensitivities are limited by retinal immaturities, rather than
by immaturity of cortical processing. This, together with evidence from infants who suffered
from visual deprivation [19], suggests that the visual cortex may mediate vision very early after
birth, provided that the incoming input is mature and transmits reliable visual information.

The subcortical input to associative visual cortex can undergo strong reorganization during
development. In adult monkey and human, V5/MT+ input originates mainly from cortico-cor-
tical connections and from independent konio-cellular LGN-Pulvinar projections that bypass
V1 [20–22]. However, in the first few post-natal weeks, the major inputs to MT+ in marmoset
monkey are a disynaptic connection from the Retino-Pulvinar projections (from the medial
portion of the Inferior Pulvinar) [23]. This input may mediate the directional response of MT
+ neurons observed very early postnatally. The present study examines whether the cortical
mechanisms of motion processing are functional in very early infancy, and in particular aims
to compare the selectivity of MT+ and primary visual cortex (V1) to flow motion to highlight a
possible differential development.

To date there is no direct evidence about the functional development of the various cortical
areas of human visual cortex or of their Blood Oxygenated Level Dependent (BOLD) response
selectivity from awake infants, although a few studies have shown that it is feasible to record
BOLD acoustic responses [24–26], or BOLD flash responses during deep anaesthesia or sleep
[27–31]. Reliable BOLD activation to flashes in calcarine sulcus has been reported, but many
studies found a reduction of the BOLD response to visual stimulation respect to no stimulation,
particularly evident after the eighth week of age [28,30]. The origin of this negative, or more
generally delayed BOLD response, is still under debate, and the issue is further complicated by
the effect of the use of anaesthesia or sedation that have been shown to modulate BOLD
response in human and animal models. In awake infants, studies using Near Infrared Spectros-
copy (NIRS) [13,32–36], which measures signals of similar origin to the MRI-BOLD response,
show evidence for positive responses in both young (around 8 wk of age) and older (4–6 mo of
age) infants to visual stimulation. The discrepancy between MRI- and NIRS-BOLD responses is
still unresolved and may reflect either the state of sedation, the sleepiness of infant or different
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types of visual stimulation. Interestingly, at 6 mo NIRS BOLD amplitude is reduced in response
to homogenous flashes and increases in response to a structured high contrast pattern [34], sug-
gesting that the type of visual stimulation matters.

Here, by measuring BOLD responses to coherent versus random flow-motion stimuli in
cooperative infants, we demonstrate that the major circuits mediating motion perception are
operative very early, by 7 wk of age. We found a selective response to coherent flow-motion in
the temporo-occipital area, cuneus, posterior parietal and posterior associative insular cortex,
with similar activation and localization as adults for visual motion [37–39] and vection percep-
tion [39–44]. Previous works have shown that resting-state connectivity networks are well seg-
regated in newborn and even in pre-term infants [45–48] and mature rapidly in the first 2 y of
age [48–50]. Here we demonstrate adult-like functional connectivity between many motion
selective associative areas, but not between primary visual cortex and temporo-occipital (puta-
tive MT+) and posterior-insular cortices. The results localize for the first time cortical areas
with high selectivity to visual stimuli in the first weeks of life, revealing an unexpected early
maturation of the cortical system for motion processing.

Results
We presented random-dot coherent flow-motion patterns, which cycled through radial, spiral,
and contraction trajectories [37] at optimal conditions for infant vision: low temporal fre-
quency, large dot-size, and high contrast (examples of the stimuli and the fixation of an infant
are shown in the S1 Movie). We first located V1 using high contrast flow-motion versus blank,
which elicited very strong responses in the occipital pole and in particular along the calcarine
sulcus in both hemispheres of all infants, with a positive BOLD hemodynamic (see Table 1 and
the single subject amplitude and average BOLD response in S1 Fig). This result contrasts with
previous reports of negative BOLD activation to flashes in calcarine sulcus observed in sleeping
or anaesthetized [27,28] infants, but is in agreement with those of Morita [30] who reported
negative BOLD only in infants older than 60 d of age and with several NIRS studies [13,32–34]
performed at similar ages.

Using this calcarine activation (labelled V1 seed), we generated a mask comprising all voxels
that correlated positively or negatively with the labelled V1 activity (S2 Fig). To allow for vari-
ability in the hemodynamic time-constant demonstrated in previous studies [24,25,27,28,51],
we computed the correlation using the delays between 0 and 3 s, after verifying that using addi-
tional delays would not change significantly the final labelled regions of interest (ROIs) (see
Methods for details). Within this functional mask, we studied significant response modulation
(positive and negative) to alternation of coherent- against random-motion stimuli, constructed
to match locally the motion velocities of the coherent flow stimulus. The motion difference
between the two stimuli is very subtle, but in adults it is able to elicit a consistent BOLD activity
in a network of areas [37–39], similar to that we observed in infants. Fig 1A and 1B shows
examples of the responses of two infants (CT and MG, p< 0.01 uncorrected) for a temporo-
occipital cortical area that strongly preferred coherent to random flow motion, both in the
right (light orange) and left (dark orange) hemisphere.

Both the anatomical localization (close to the inferior-temporal sulcus as assessed by an
expert neonatal neuro-radiologist), and the time-course of the infant responses, were very simi-
lar to those of adults using similar statistical thresholds and procedure (see Fig 1A and 1B, sub-
ject MCM, p< 0.01). Table 1 reports the location and extension of these areas for all subjects.
The adult V5/MT+ was clearly labelled in a location similar to previous studies [37]. Despite
the great difference in atlas and morphometry between adult and infant brains, the coordinates
of these areas were highly consistent between the two groups of subjects [37]. Given the
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Table 1. Position of the centre of mass, extension, and peak Z-value (Z*) for each infant (top) and adult (bottom) region of interest (ROI) in
response to coherent versus random flowmotion.

MT+ V6 PIVC Pcu-Cu V1 seed

Infants n χ ψ ζ Z* n χ ψ ζ Z* n χ ψ ζ Z* n χ ψ ζ Z* n χ ψ ζ Z* rm Z* b

BF 537 -34 -59 -5 2.4 99 -12 -65 18 2.3 144 -25 -33 16 2.3 105 -7 -53 24 3.4 361 1 ± 3 -69 -9 2.2 3.4

301 28 -53 -5 3.3 305 15 -65 19 2.2 51 22 -22 15 2.2 61 6 -58 21 2.4

CG 97 -28 -46 3 2.9 109 -14 -56 21 2 164 -30 -23 4 3.4 - - - - - 100 -4 ± 3 -59 -7 1.7 3

378 35 -38 0 3.1 226 4 -59 18 2.3 62 35 -24 11 2.9 181 5 -47 12 3.0

CM 107 -38 -54 6 3 211 -24 -68 21 3.3 28 -32 -28 15 2.1 42 -11 -46 15 4.4 1,120 -4 ± 5 -62 -14 4.0 4.9

412 34 -55 2 2.9 511 14 -67 22 3.1 208 26 -30 16 2 - - - - -

CT 87 -40 -55 6 2.6 288 -5 -58 25 3.4 29 -28 -20 5 2.5 253 -11 -47 12 3.1 38 3 ± 2 -64 -11 1.2 2.5

337 34 -45 3 2.5 42 9 -56 17 2.1 18 23 -20 6 2 - - - - -

DE 410 -54 -45 -1 2.9 292 -7 -66 13 3.8 - - - - - - - - - - 414 -3 ± 4 -61 -16 2.7 3.7

209 30 -42 6 4.5 410 13 -58 11 2.3 266 25 -17 6 2 - - - - -

FEG 673 -29 -56 -1 4.3 196 -12 -66 21 3.4 60 -25 -31 11 3.9 192 -3 -52 7 3.5 501 -3 ± 4 -61 -6 4.5 4.4

158 32 -52 -5 4.4 78 11 -67 20 3.3 46 24 -34 12 3.2 - - - - -

FG 59 -36 -46 -4 3.1 411 -11 -65 15 4.7 121 -27 -32 7 3 229 -8 -43 9 2.9 123 1 ± 2 -58 -17 1.6 2.3

472 33 -50 -5 5.3 246 6 -61 15 3.8 203 25 -30 10 3.5 - - - - -

GC 143 -37 -49 1 3.1 262 -9 -63 15 2.9 190 -29 -19 8 2.3 - - - - - 183 -1 ± 3 -67 -16 2 2.4

168 35 -50 3 3 370 15 -65 15 3.6 191 25 -16 10 3.3 - - - - -

MG 31 -40 -52 -2 2.9 144 -4 -62 13 2.6 36 -29 -29 11 2.3 45 -4 -51 27 2.3 16 -3 ± 4 -62 -15 1.3 3.9

73 38 -56 -1 3.1 - - - - - 52 28 -27 9 2.2 - - - - -

ML 236 -39 -50 -3 2.1 - - - - - - - - - - - - - - - 239 -6 ± 3 -65 2 2.1 3.7

312 30 -47 2 4.6 - - - - - - - - - - - - - - -

OD 230 -29 -58 0 4.2 96 -12 -68 19 3.7 443 -19 -26 10 2.8 377 -5 ± 3 -58 -10 1.6 4.9

121 31 -57 -3 3.9 286 13 -68 18 4.3 459 21 -28 13 4.3

RE 407 -29 -40 2 4 141 -13 -58 23 2.2 170 -28 -36 11 2.5 - - - - - 246 -3 ± 5 -58 -9 3.1 4.5

357 29 -49 9 3.8 263 23 -59 17 3.4 88 33 -33 12 2.6 - - - - -

MT+ V6 PIVC Pcu-Cu V1 seed

Adults n x y z Z* n x y z Z* n x y z Z* n x y z Z* n x y z Z* rm Z* b

CE 316 -42 -70 -2 3.4 881 -16 -83 36 5.2 140 -32 -35 23 4.0 - - - - - 252 -2 ± 2 -83 -5 3.8 >6

492 46 -72 -1 4.1 277 14 -86 36 5.3 43 35 -20 19 3.4 - - - - -

CoGa 192 -42 -69 -1 3.3 261 -10 -87 36 2.2 11 -37 -29 18 2.1 - - - - - 604 2 ± 2 -84 4 3.7 > 6

781 44 -62 3 5.5 220 5 -86 37 3.2 24 38 -29 22 2 209 23 -77 21 4.7

CS 143 -40 -67 0 3.3 364 -10 -88 35 4.3 221 -39 -30 15 3.4 - - - - - 936 4 ± 7 -87 -11 3.1 > 6

322 47 -64 -2 3.8 857 4 -95 26 3.3 120 39 -27 16 3.2 114 10 -75 7 3.2

GPG 788 -45 -67 -2 3.9 252 -16 -82 28 4.1 136 -37 -35 21 3.3 115 -16 -67 11 2.8 1,884 0 ± 7 -90 -8 2.2 > 6

298 47 -62 -5 4.5 293 13 -81 34 4.7 10 38 -23 24 2.7 - - - - -

LVL 723 -45 -68 7 4.9 1197 -16 -91 29 4.5 126 -44 -23 18 3.6 66 -18 -61 6 2.5 851 -2 ± 6 -91 -5 3.9 > 6

586 47 -67 1 > 6 1234 14 -89 29 > 6 143 43 -24 14 4.9 291 8 -62 4 3.2

MCM 387 -39 -69 -2 3.5 376 -7 -82 29 4.4 301 -43 -34 18 4.3 433 -5 -66 13 4.9 3,998 -2 ± 6 -88 -12 3.3 > 6

1147 41 -64 -5 > 6 740 7 -88 26 > 6 313 39 -31 19 5.5 115 8 -70 3 3.3

MM 128 -42 -56 4 3.7 122 -7 -90 28 2.7 57 -34 -26 18 3 - - - - - 1,107 2 ± 2 -86 -6 >6 > 6

189 41 -52 -5 4.2 267 7 -89 28 4.2 34 34 -22 15 2 307 1 -53 13 2.2

PA 287 -49 -62 1 2.7 943 -7 -78 32 3.2 139 -40 -29 15 3.3 652 -1 -62 18 4.6 2,022 4 ± 7 -84 -3 3.5 > 6

580 -39 -60 0 2.9 1007 8 -79 30 4.9 325 41 -27 16 3.1 - - - - -

PE 545 -48 -60 -3 3.9 1118 -15 -89 27 5.4 222 -38 -29 15 2.1 893 -4 -70 30 4.3 763 -1 ± 5 -85 0 3.6 > 6

994 51 -59 3 5.3 1287 17 -86 27 5.3 126 42 -29 13 3 - - - - -

Analysis was performed using a General Linear Model (GLM) approach for each single subject with a statistical threshold of α = 0.05 (corresponding to a

minimum Z-score value of 1.96). The coordinates are in millimetres from the anterior commissure (AC) point for infants (“χ, ψ, ζ”notation) and in Talairach

space for adults (“x, y, z” notation). Note that V1-seed ROI is bilateral and the V1 Z-score related to the response to coherent flow-motion versus blank is

reported in the column Z*b; the Z-score of the response to coherent versus random flow-motion is reported in the Z*rm column and many of these values

are not statistical significant (<2). Bold rows refer to regions in the left hemisphere. (MT+: temporo-occipital complex; V6: Visual area six; PIVC: posterior

insular vestibular cortex; PCu-Cu: PreCuneus-Cuneus; V1: primary visual cortex.)

doi:10.1371/journal.pbio.1002260.t001
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similarity in anatomical localization (for congruency between localization in infants and in
adults see multi-subject section) and the response selectivity to coherent flow-motion between
adult and infants, we labelled this area as the putative infant MT complex (MT+). In all infants,
the responses of MT+ were reliable at a threshold of p< 0.01 in 22 out of 24 ROIs. For only
two MT+ ROIs, the statistical threshold had to be reduced to p< 0.05 before activity of similar
cluster-size could be identified at the expected anatomical location. An independent measure
of reliability is given by the Signal to Noise (S/N) ratio, which measures the relative power of a
modulated signal at the fundamental frequency of the stimulus repetition respect to close-by
frequencies. Scalar S/N values were similar to those measured in adults (Fig 1, compare C with
D). Also the phases of the responses, that in principle could vary uniformly in the 0–360°
range, were tightly clustered in infants and adults and the vectorial statistical analysis between
the S/N response of infants and adults (Left and Right MT+ pooled together) showed that the
BOLD responses were not significantly different (See S1 Table). Also the differences between
Left and Right hemisphere BOLD responses averaged across subjects (see Fig 1C and 1D top
panels) were not significant at either age. However, the variability across infants is somewhat
larger than between adults, but this is to be expected given the higher level of measurement
errors, including the size of stimulated visual field, eye movements and age range.

The network of regions analysing flow in adults is very extensive, comprising (besides V5/
MT+) many dorsal associative visual areas (V3, V3A&B, TOS, LO) [37,52], as well as multi-
modal cortices such as V6 [40,41], Pre-Cuneus, cingulate sulcus and an associative vestibular
cortex located in the posterior insular cortex, PIVC/PIC [39,41,43,44]. Responses to coherent
versus random stimuli were observed in all adults, both in the dorsal visual and the associative
multisensory cortices of this network (Fig 2 reports the anatomical location of the labelled

Fig 1. Localization and BOLD responses of complex MT+. A: Example of localization of complex MT+ in two infants (CT and MG) and one adult (MCM;
bottom row) in response to coherent- versus randommotion (threshold at p� 0.01). Images in radiological convention. B: time-courses of the individual ROI
in A for the right (light orange) and left (orange) hemispheres, averaged over 4 and 5 periods for CT and MG respectively. The grey bar indicates the duration
of coherent motion. C- top: Time-course averaged across all infants for the right (light orange) and left (orange) hemispheres of MT+ (bars ±1 standard error
of the mean [sem]). C-bottom: reliability of responses of individual infant MT+. The distance from the origin indicates the Signal to Noise (S/N) ratio evaluated
as the ratio between the amplitude of the fundamental frequency to the mean square root of the amplitude of the adjacent frequencies. The angle reports the
phase of the fundamental frequency response (in degree). A phase of 64° corresponds to a standard hemodynamic delay. D. Same convention as C for adult
subjects. Filled symbols correspond to p < 0.01, open to 0.01 < p < 0.05 threshold. Note that all infants’ responses have a S/N ratio greater than 1. (MT+:
temporo-occipital complex; s: seconds.) Numerical data are available in the S1 Data, Fig 1.

doi:10.1371/journal.pbio.1002260.g001
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regions in adult CS and Table 1 the Talairach coordinates of their foci, with the peak Z-score
and the size of labelled ROIs at p< 0.05). Nearly all these areas, particularly V6 and the
Cuneus/Pre-Cuneus areas, showed a strong positive preference to flow-motion, while the ves-
tibular cortex PIVC/PIC and V1-seed (the ROI selected in response to coherent motion versus
blank) showed a positive preference for random motion, consistent with previous reports in
adults [40,52]. Not only are the anatomical locations of these areas very similar in adults and
infants (see Table 1), but so also are the BOLD modulation (Fig 3A), the reliability and
response delay (S/N and phase respectively, Fig 3B). Only minor differences emerge. The
V1-seed ROI, selected by the response to flow-motion against blank, showed a significant nega-
tive response in adults to coherent versus random flow-motion (two tailed t-test, t = 2.70,
p< 0.02), but not significantly different from zero in infants (two tailed t-test, t = 0.65
p = 0.47), indicating possible delayed development. While it was not possible to compare

Fig 2. Localization of the motion-network areas. Example of localization and extension of all major areas (ROIs) in two infants (FG and CG) and one adult
(CS, bottom row). Light colours for right hemispheres, dark colours for left hemispheres. The location of each bi-dimensional section is indicated in
millimetres from AC point for infants (“χ, ψ, ζ” notation) and in Talairach coordinates for adults (“x, y, z” notation). Note that the V1 seed was bilateral and has
been labelled on the response to motion versus blank (V1 seed). Several occipital areas labelled in yellow are not included in the detailed analysis, given the
difficulties in distinguishing between them in infants. (V1: primary visual cortex; MT+: temporo-occipital complex; V6: Visual area six on medial-parieto-
occipital region; PIVC/PIC: posterior insular vestibular cortex and posterior insular cortex respectively; PCu/Cu: Pre-Cuneus/Cuneus.) Numerical data of size
and localization are reported in Table 1.

doi:10.1371/journal.pbio.1002260.g002
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BOLD amplitude of the ROIs between infants and adults, given that the ROIs were defined
using the same dataset (statistical circularity), it was possible to compare delays. The responses
of V6 (f(infant) = 82 ± 40 °; f(adult) = 55 ± 31 °) and PIVC/PIC (f(infant) = -146 ± 35 °; f
(adult) = -117 ± 38 °) regions had a slightly larger hemodynamic delay indicating a delayed
BOLD hemodynamics in infants, in agreement with previous results in different cortical area
[25,51] (S1 Table reports the significance tests calculating by vectorial statistics). Interestingly
the infant delays with respect to adult delays vary between areas and between stimuli. For
example, the response of the MT+ and V6 ROIs to flow versus blank is negative in some infants
(see S3 Fig), suggesting a specificity of the Negative BOLD effect for the visual stimulus [34].

Besides the ROIs reported in Table 1, many other occipital areas were labelled in the indi-
vidual infants. We did not analyse in detail these associative occipital cortices (yellow in Fig 2),
given that these regions often blurred with each other (because of their close proximity in the
small infant brain) and are very difficult to classify by anatomical landmarks.

Multi-subject Analysis
The flow-selective area in the Cuneus/Pre-Cuneus was labelled in only seven infants, while it
was always present in all except one adult; in another subject, the V6 and PIVC/PIC ROIs were

Fig 3. Average time-course and individual Signal to Noise ratio of the motion BOLD response. A:
Average time-course for V1 seed, V6, PCu/Cu, PIVC/PIC in infants (left) and adults (right) in response to
coherent versus random flow-motion (threshold at p� 0.05). Light colours refer to the right hemispheres
ROIs, darker colours to the left. Bars represent ±1 sem. Infant and adult responses are very similar. B: Signal
to Noise ratio polar plot for individual subjects (left column infants, right column adults). Convention as in Fig
1C and 1D. The points form clear clusters indicating that the response is reliable. For only the V1 seed did
two infants have S/N less than 1. Note that the scale in A for V6 ROI is compressed, given the larger activity
of this area. Filled symbols correspond to p < 0.01, open to 0.01 < p < 0.05 threshold. (V1: primary visual
cortex; MT+: temporo-occipital complex; V6: Visual area six on medial-parieto-occipital region; PIVC:
posterior insular vestibular cortex; PCu/Cu: Pre-Cuneus/Cuneus.) Numerical data are available in S1 Data,
Fig 3.

doi:10.1371/journal.pbio.1002260.g003
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not significant at α = 0.05. To assess the congruency of ROI localization, we built an anatomical
template by brain segmentation using dedicated tissue probability maps (illustrated in S4 Fig)
and we performed a fixed-effect GLMmulti-subject analysis (see Methods). Fig 4 (top panels)
shows the results mapped on the same anatomical template of S4 Fig for infants and in Talair-
ach atlas for adults, at the same statistical threshold of q< 0.05 (false discovery rate [FDR] cor-
rected and without mask). In adults, the occipital foci associated both with dorsal and with
ventral pathways [53,54] showed a stronger response to coherent motion, with the exception of
V1/V2 areas. A negative response was also labelled in the posterior insular cortex of the left
hemisphere (slice at z = 8), while the right PIVC/PIC became labelled lowering the threshold at
p< 0.05 (lower panels). This result is consistent both with the large variation in phase of the
PIVC/PIC responses (see Fig 3 and S3 Fig) and with the large variation in the localization
between subjects (see Table 1). The variation in phase was to be expected given that the BOLD
amplitude of PIVC/PIC is modulated by the strength in vection perception [39–43]: subjects
with stronger vection illusion might show stronger negative responses. Similarly, also the large
scatter in position of the PIVC/PIC region has been already reported [43]. Both factors indicate
that the multi-subject GLMmay not be the most suitable technique to locate this area. Never-
theless it is reassuring that when decreasing the threshold to p< 0.05 (bottom panels) only one
clear additional cluster in the posterior insular cortex became labelled, reinforcing the sugges-
tion that PIVC/PIC localization can vary considerably across subjects. In infant multi-subject
GLM, no activity was significantly labelled for V1/V2; all the ventral areas along the fusiform

Fig 4. Multi-subject GLM analysis for coherent versus random flowmotion stimuli.Results of a multi-subject fixed-effect general linear model
(FFX-GLM) analysis for the BOLD response to coherent versus random flow motion performed on the group of 11 infants and registered on the infant brain
template on left panels and on 9 adults in the right panels. Colour bar represents the statistical t-values, with thresholds corresponding to a q(FDR) < 0.05 in
the top panels and to p < 0.05 uncorrected in the bottom panels. Numbers refer to the “ζ” coordinate of the transversal slice for the infants and to the Talairach
z for the adults. R-L in radiological convention. (R: right; L: left; FDR: false discovery rate.) Data of the statistical maps are available in S2 Data.

doi:10.1371/journal.pbio.1002260.g004
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and the lingual gyri had negative responses, while the adult responses were positive, indicating a
late development of direction selectivity for the ventral pathways. In contrast, the dorsal areas, like
V3/V3A, LO, TOS, V6/V6A, andMT+, were clearly labelled, and showed a preference for the
coherent flow motion. In the right hemisphere (slice at z = 16) a negative response corresponding
to the location of the PIVC/PIC was labelled. As in adults, decreasing the threshold at p< 0.05
(bottom panels) also the PIVC/PIC in the left hemisphere became detectable, suggesting that, as
in adults, for infants, the localization variability of this area is high. There were also other negative
and positive clusters in the temporal lobe (see for example slice at z = 0) that can be also observed
in adults, but whose function and circuitry are still unknown. The similarity in the localization
pattern between infants and adults strongly suggests that the development of visual primary and
dorsal associative cortex for motion processing is quite well advanced by 7 wk of age.

In nine out of twelve infants, we were also able to record resting-state activity during sponta-
neous sleep. Fig 5 shows the correlation of the resting-state activity between each pair of the
ROIs of Fig 2, for all possible combinations in infants and adults. In most regions of infants
and adults the correlation was strong and significantly non-zero (indicated by stars in the indi-
vidual cells in Fig 5). Significant correlations reflecting functional connectivity were present in
both adults and infants between homologue areas of the two hemispheres, including PIVC/
PIC, V6 and MT+. The correlation matrixes were similar in adults and infants, corroborating
the similarity of the BOLD responses with two main exceptions. In infants, the correlation
between bilateral V1 activity and MT+ was significant (although just marginally for the right
hemisphere), but it was positive, while in adults the correlation was strong and negative, as pre-
viously reported [55,56]. Similarly, the PIVC/PIC activity in infants showed a significant posi-
tive correlation, while in adults it was negative.

Discussion
Our results show that visual motion cortical areas have a high degree of functional specializa-
tion in very young infants: direction selectivity is well established in many dorsal cortical

Fig 5. BOLD resting state network. A and B: Correlation matrices of the BOLD resting state activities between all possible ROIs in infants (left) and adults
(right). Each value (see scale) shows the average of the correlation across subjects. The significance of each value is indicated by the stars in the checks
below the main diagonal, showing the p-values obtained by the cross-correlation calculated concatenating the normalized resting state BOLD signals of all
subjects of the group. To test for differences between infant and adult correlation matrices, a two-tailed t-test was performed between the two groups, and the
checks with contour above the main diagonal indicate the two significantly (at p < 0.01 and p < 0.05) different values. C: The diagram illustrates the two
correlations that are different between adult and infants. The weak connectivity in infants between V1 and temporal-occipital areas was also observed in
[46,48]. (V1: primary visual cortex seed; MT+: temporo-occipital complex; V6: Visual area six on medial-parieto-occipital region; PIVC: posterior insular
vestibular cortex; PCu/Cu: Pre-Cuneus/Cuneus; R: right; L: left.) Numerical data are available in the supporting file “S1 Data“, Fig 5.

doi:10.1371/journal.pbio.1002260.g005
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regions at 7 wk of age. To distinguish between coherent and random flow-motion, the neuronal
mechanisms must be selective to motion direction and also integrate local-motion signals
along complex trajectories. Direction selectivity in adult primates occurs initially in V1, while
large spatial integration along complex trajectories occurs in V6 and V5/MT+, and propagates
to higher visual cortices [42]. Given that 1-mo-olds (or younger) infants show defensive motor
responses such as blinking and avoidance head movements in response to large-field radial
expansion patterns [1,3], and that motion direction selectivity has been demonstrated beha-
viourally [2], it is reasonable to assume that selectivity for motion direction emerges around 7
wk of age or earlier in many regions of the dorsal pathways, including MT+ and V6, both cru-
cially important for motion perception. This suggests that cortical processing of motion is
more mature than has been proposed at this age [8,11,15], with a relatively stronger response
of MT+ compared with occipital areas in infants. Interestingly, V5/MT+ is situated ventro-lat-
erally, just posterior to the meeting point of the ascending limb of the inferior temporal sulcus
and the lateral occipital sulcus, and corresponds, on individual subjects, almost precisely with
Flechsig's Field 16 [57], one of the areas that is myelinated at birth, corroborating the sugges-
tion that V5/MT+ should be considered as a primary sensory area with an early maturation
[58]. An earlier maturation of the V5/MT+ is also consistent with ERP evidence at 5 mo of age
of a more lateralized selectivity to coherent motion in infants with respect to adults [59], indi-
cating that the delayed maturation of more occipital areas (with respect to V5/MT+) is pro-
tracted over several months. Considering that in adults there is evidence that direction
selectivity is computed in MT+ rather than being inherited from inputs of earlier cortical
regions [22,60], it is feasible that the MT+ directional selectivity BOLD response at 7 wk of age
is also computed locally, and it is independent from V1 input. The neuronal processing of the
ventral and dorsal visual pathways are quite distinct and mediate different visual functions
[53,54]. Ventral area, like V4 and fusiform gyrus, showed preference for coherent motion in
adult, although these areas are not considered crucial for the perception of motion direction
and probably inherit the direction selectivity from dorsal areas. Interestingly in infants, these
areas prefer incoherent motion as illustrated in Fig 4. These results suggest that the early devel-
opment of cortical specialization might be a prerogative of the dorsal pathway and visual
motion analysis, corroborating the evidence of a later maturation of the ventral stream in chil-
dren [61] sub-serving object and face recognition [62,63].

Overall, our data suggest that both primary and dorsal associative cortices develop direction
selectivity at a similar stage. The motion selectivity of V6-, Pre-Cuneus and associative vestibu-
lar cortex has been related to the illusory percept of body-motion induced by large flow field
(vection) [39–41,43]. The similar activity of these regions in infants and adults suggests that
infants may have a sense of vection and hence a sense of body position. The continuous stimu-
lation of the semi-circular canals in the womb may induce early development of the vestibular
system, so the few weeks of visual experience may be sufficient to endorse the vestibular-visual
integration necessary for vection perception. While this is consistent with early development of
the vestibulo-ocular response in newborn infants [64], it is surprising that visuo-vestibular cor-
tex is selective to motion so early, as optimal multisensory integration develops slowly in
humans [65–67].

Our data show that the hemodynamic response of infants is delayed with respect to adults,
similar to that reported at similar ages in response to acoustic [25] and motor/tactile stimula-
tion [51]. The delay of the response is of the order of few seconds, consistent with the delay
observed by Arichi [51], and cannot explain the phenomenon of Negative BOLD correspond-
ing to 180 degree of phase shift and delay on the order of tens of seconds. It is worthwhile not-
ing that other laboratories have observed positive BOLD visual responses in this age window,
and negative BOLD responses for older infant [30], reinforcing the suggestion that the
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Negative BOLD phenomenon is related to the functional maturation of the cortex. However,
the fact that NIRS studies in awake infants consistently find a positive BOLD responses at all
ages [13,32–36] suggests that the MRI-BOLD negative response may not result from synapto-
genesis or the cerebral metabolic rate for oxygen, but rather from the alertness state of the
infant. In addition, the positive versus negative BOLD response could be biased by the use of
flash stimuli versus black background, rather than a spatial pattern whose contrast is modu-
lated over time. This is supported by the finding that the phase of V6 and MT+ became nega-
tive in response to the flow versus blank (S3 Fig), and blank stimuli engage usually little
attention in infants. Interestingly, a recent NIRS study showed a negative BOLD response to
flashes and a positive BOLD response to high contrast flickering patters in 6-mo-old infants
[34]. It is well known that flash stimuli are strongly subject to suppression during blinks, and
the suppression may be even stronger when the eyes are shut or during sleep. Repeating our
study with older collaborative and awake infants could provide important clues to resolve the
origin of negative MRI-BOLD response in infants, although the difficulty in recording stable
signal increases rapidly with age because of the increased motility of older infants.

During post-natal development, there is a continuous refinement of anatomical connections
in the mammalian visual system, which are initially diffuse and then progressively pruned to
increase target selectivity. Between 0 and 4 mo, synaptic density increases rapidly [68,69], and
myelination intensifies along the visual pathway. Diffusion Tensor Imaging (DTI) studies sug-
gest that at birth all major fiber systems are in place, despite low anisotropy value [70] and
incomplete myelination [71]. The functional connectivity observed in our data showed an
adult-like correlation between inter-hemispheric ROIs and between associative cortices, in
agreement with the anatomical DTI findings of well-established fiber connections. However,
connectivity between V1 and MT+ and PIVC/PIC were different than in adults. In infants, the
optic radiations are diffuse (see for example Fig 3 in [72]) and may project not only to V1 but
also to other visual cortices. In addition, other transient projections not originating from LGN
may be functional in young infants. These diffuse afferent projections to the cortex might
mediate the strong BOLD response observed here in all areas, without implicating adult-like
cortico-cortical connections, which at this age are highly immature [69]. This model would
also explain the weak (although significant) correlation between MT+ and V1, given that these
areas would receive independent V1 inputs to generate the strong BOLD response selective to
motion. It would also reinforce the suggestion that, in infants, BOLD directional selectivity is
computed in MT+ rather than being inherited from inputs of earlier cortical regions. However,
some caution is required in comparing adult and infant functional connectivity given that the
infant, but not the adult, data were acquired during sleep. Several studies show that functional
connectivity during sleep and relaxation [73] may be different, but the differences are not sig-
nificant for the sensory-visual resting state networks [74]. Resting-state functional connectivity
appears to be invariant even under anaesthesia [75].Therefore, we do not foresee that different
depths of state of alertness would affect the outcome of our studies. In addition, most of the
functional connectivity strengths are equal in infants and adults, in agreement with previous
results [48]: only V1-MT+ was very different. It would be rather strange for sleep to affect so
selectively only this connectivity.

As in human, in cat and monkey, the putative corresponding area of human MT+ is well
developed at birth, with a developmental time-course similar to primary visual cortex [57,58].
V5/MT+ neurons of newborn monkey show directional selectivity [8]. Interestingly, in mon-
key it has been suggested that the fast maturation of V5/MT+ is mediated by strong and direct
retino-pulvinar-cortical projections, which are later pruned during development [23]. In adult
humans the LGN-MT+ projections, which bypass V1, probably overtake the functional role of
this direct retinal-pulvinar input [20–22], helping to explain several motion abilities retained
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after lesion of V1 (such as “blindsight”). The existence of a direct retino-pulvinar input to MT
+ also in human infants would explain the weak functional connectivity between MT+ and V1.
However, other explanations cannot be excluded, including delayed development of feedback
projections, which may have an overall suppressive effect, explaining the negative correlation
in adults. The suppression of V1 activity by feedback connections would also be consistent
with the negative BOLD response to motion (against noise) of V1 in adults, and the smaller
negative (not significant) modulation in infants, suggesting an overall delayed development of
V1 circuitry respect to MT+.

Whatever the anatomical connections between the various areas in infants, the extensive,
well-developed network of visual associative areas selective to motion at 7 wk, demonstrated by
this study, suggests that direction selectivity, the most fundamental property for motion per-
ception, emerges very rapidly, and simultaneously in many dorsal cortices. This developmental
pattern may be consistent with the early suggestion [76] that direction selectivity development
is limited by peripheral factors such as myelination and speed of neuronal signal transmission.
Timing of arrival of spike input to cortex is crucial for motion perception. Jitter in temporal
delay of the order of milliseconds is sufficient to disrupt or even invert motion [77]; disorgani-
zation of input spike trains or high levels of noise may be sufficient to impede the formation of
direction selectivity at the cortical level. As input motion signals become more reliable and
organized, the cortex may be capable of developing the complex neuronal circuitry for direc-
tion selectivity and trajectory integration only within a very limited time window. Similar fast
cortical development has been observed previously for stereo acuity or chromatic contrast (for
review see [76]), and also for these functions, the limiting factors may be peripheral. If the pres-
ent suggestion of independent emergence of direction selectivity in MT+ is confirmed by addi-
tional evidence, we should revise the widely accepted idea of a slow, uniform, and progressive
maturation of the various cortical hierarchy levels [9] and of cortical motion responses [59].
We propose an alternative model in which all dorsal cortical regions have equal potential for
fast maturation and for developing appropriate circuitry, once the input begins to transmit reli-
able neural information.

Methods
The study was approved by Ethics Review Board of Fondazione Stella Maris and Regional Pae-
diatric Committee (Meyer Paediatric Hospital). Written informed consent was obtained by all
subjects or their parents before the experiment.

Sixteen (five females and eleven males) healthy, full-term, awake infants, mean age 7.7 ± 1.2
wk (range = 6.6–10.4w), were scanned by a 1.5T MR scanner (GE Healthcare, USA). Data from
three subjects were not included in the analysis because of movement artifacts or deep sleep,
and for one subject we obtained only the anatomical dataset, leaving twelve subjects with full
data. All infants were assessed by an expert paediatric neurologist by means of the Hammer-
smith Neurological exam [78] and a battery of visual function tests, including fixation to white
and black targets and the ocular following response. The infants were again assessed at 3 mo
with a neurological follow-up that confirmed normal development. After the MR exam and
before any data analysis, an expert child neuro-radiologist performed also an examination of
the anatomical scans to reveal possible anomalies and all infant brains were referred as normal.

The MR protocol comprised acquisition of a three-dimensional (3-D) T1w FSPGR sequence
(TR/TE = 12.28/5.14, isotropic voxel = 1x1x1mm3), and an fMRI session of three different
series (GRE-EPI, TR/TE = 3000/50, FA = 90°, FOV = 240 X 240 mm, matrix = 96 X 96, slice
thickness = 3 mm). fMRI experiments included two series of 84 time points (4’12” duration,
block design, six periods of alternating coherent flow motion versus a blank or a random

BOLD Response to Visual Motion in Infants

PLOS Biology | DOI:10.1371/journal.pbio.1002260 September 29, 2015 12 / 22



motion condition, each lasting 21 s). In nine subjects (age range = 6.6–8 wk) a resting state
fMRI series (120 time points, 6’00” duration, no stimulus presentation) was successfully
acquired during the spontaneous sleep. All functional series were preceded by four dummy
time points to allow signal stabilization. Stimuli were generated in Matlab (TheMathWorks)
and displayed on LCD goggles (Resonance Technology) positioned inside the head coil 10 to
15 cm from the infant eye, giving a visual field of about 27 X 20 degrees.

Infant eyes were refracted with retinoscopy at a distance of 87 cm (the virtual image of the
goggles is greater than 1 m). All infants were in the normal range between 0 and +2D: given the
viewing distance, no additional correction was introduced. Fixation of infant gaze was moni-
tored by an infrared camera installed within the goggles (sample frequency 60 Hz, see final seg-
ments of S1 Movie for fixation example). Usually infants scanned the stimulus very attentively
and this, together with the real-time movement signals, gave an indication of their level of
wakefulness. Infants entered the magnet lying down on the scanner table, swaddled in a sheet
by an expert neonatal nurse to calm the baby and to reduce movement. One operator (MCM,
SAC, or LB) accompanied the child into the magnet, taking the sphinx position, surrounding
the body of the child with her arms and wrapping his/her head with her hands in order to
maintain a physical contact, to facilitate calming and to reduce motion. The operator was in
constant communication with the staff at the acquisition terminal. Infant ears were protected
by cotton wool padding at the auditus of the external auditory canal, and sound-attenuating
headphones. In order to reduce the stress of the babies, we adopted specific strategies in accor-
dance with the character and routines of each individual child. Some preferred to use a pacifier
to relax and to sleep, especially for anatomical and resting state fMRI scanning. If the infant
moved or changed position the operator could reposition the goggles by tilting them. In these
cases, the recording was continued, but the series was cut offline (see details below). Impor-
tantly, the operator could not see the visual stimulus delivered, or if the goggles were switched
off for the resting state scan. During the anatomical scan, the goggles were switched off and
nine of the infants fell asleep, allowing us to acquire the resting-state scan.

The same MR protocol described for children was repeated in nine healthy adults (six
females and three males, mean age 35 y). In adult subjects, resting state scans were acquired by
asking to the subjects to relax and stay still with eyes closed.

The visual motion stimuli comprised 100 dots, half black and half white, of 1.3 degrees
diameter, moving at constant speed (5 deg/s) with limited lifetime of 10 frames (at 60 Hz about
160 ms). For coherent motion the trajectory of the dots changed gradually from expansion,
inward-spiral, rotation, outward-spiral, contraction, then repeating the cycle again (see S1
Movie, initial segments). The full cycle lasted 2 s. The random motion was constructed using
the same dot velocities shuffled randomly over the dots, so it had matched local motion power.
The dots covered all the visual field except the central 2 degrees. Dot density was kept constant
in all displays, and collision between dots was not allowed. The mean luminance was 20 cd/m2

and contrast 0.85 (for further information, see [37]).
Three-dimensional T1-weighted images of each infants were visually inspected to select good

quality data in order to create a specific infant template for this study. Only one infant’s data
(subject DE) was discarded because of the poor grade of anatomical images; all the remaining
twelve 3-D datasets were selected and analysed with the SPM8 package with the Diffeomorphic
Anatomical Registration Through Exponentiated Lie algebra (DARTEL) algorithm [79]. DAR-
TEL uses diffeomorphic warping to obtain a study-specific template, with an optimal inter-sub-
ject realignment and an improved co-registration of small structures, such as those of infant
brains. A pre-conditional step for the use of this algorithm is the segmentation of brain tissues
using standard tissues probability maps. For infants, we used the segmented partial estimate vol-
umes for grey matter, white matter, and cerebral spinal fluid derived by the 36 MRI dataset of
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3-mo-old infants available at http://jerlab.psych.sc.edu/NeurodevelopmentalMRIDatabase/
index.html as tissue probability maps [80]. The obtained atlas is shown in S4 Fig.

Data analyses were performed with BrainVoyager (BV, Brain Innovation). First, for each
functional series, motion spikes or periods of heavy movement that could not be compensated
for were eliminated, and the resulting separate intervals were considered as independent
shorter samples. Infant motion was estimated by calculating the six rigid body parameters
(three for translation and three for rotation) across time. Time series with head motion greater
than 4 mm (translation) or 5° (rotation) were excluded. For each subject and stimulus, the
mean and maxima values of the six rigid body parameters registered in the survived (and used)
time courses are reported in S2 Table.

The recorded eye movements were analysed to verify fixation and alertness of the infant;
intervals of sleep or jerk movements that could not be adequately compensated were discarded
from analysis, typically for the duration of half period of stimulation. For all infants, we were
able to select at least half duration of the complete recorded run (on average, 4.9 ± 0.8 periods
for coherent versus random flow motion, 4.8 ± 0.9 periods for coherent flow motion versus
blank, and 110 ± 10 data points for resting state stimulus) for further analysis, with the remain-
ing periods discarded due to head motion or sleep. Data preprocessing included mean intensity
adjustment to compensate for interscan intensity differences, temporal interpolation and re-
sampled to compensate for slice dependent time differences (sinc function), 3-D motion cor-
rection (sinc interpolation), and high-pass temporal filtering (GLM-Fourier approach, two
cycles).

Functional data were co-registered on the three-dimensional anatomical T1-weighted
images by using an affine alignment with the standard BV nine parameters (three for transla-
tion, three for rotation, three for FOV scale). Infant anatomical datasets were in turn trans-
formed into the AC-PC coordinate system by applying a rigid transformation (6 parameters; 3
for translation and 3 for rotation), whilst adult data were transformed into the standard Talair-
ach space. For each subject, BOLD responses were analysed using a GLMmodelling the regres-
sor of interest (by convolving a box-car function for each stimulation block with a gamma
variate function for the hemodynamic response) and six spurious movement-regressors (out-
puts of the 3-D motion correction procedure).

The first stimulus (flow-motion versus blank) was used to select a bilateral region with very
strong response, located along the left and right calcarine sulci (p< 0.001 in infant and
p< 10−10 in adults). Many other strong activities in the occipital pole were present but not ana-
lysed. The signal registered in this ROI (labelled V1-seed) was used to calculate correlation
maps by cross-correlating the V1-seed ROI signal with all other brain voxels, using temporal
delays in the range 0 to 21 s, given the unknown hemodynamic delay of infant BOLD
responses. S2 Fig shows the maps of four different infants computed for positive and negative
correlation at zero delay and at p< 0.05. The low conservative threshold of p< 0.05 marked
about 40% of all voxels for delay = 0 s and additional 26% for delay = 3 s. Computing the maps
for the remaining delays in the range of 3 to 21 s added only about 30% new voxels. Repeating
the same analysis only on the selected ROIs (see below the selection procedure), we obtained
that 80% of the voxels were labelled at delay = 0 s and 94% combining delay 0 s and 3 s. Given
the high proportion of labelled voxels, in the analysis presented here we applied a mask
obtained by the union of those computed at 0 and 3 s delays.

Both for infants and adults, the GLM analysis of the coherent versus random motion was
performed within this mask, and all positive or negative foci at a threshold of p� 0.05 were
labelled (see Table 1 for statistical thresholds of the ROIs). These ROIs were located by a
neuro-radiologist (with more than 20 y of experience with newborn infants) along the major
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infant sulci and gyri. In adults, we restricted the analysis to the major regions of interest selec-
tive to motion [37–39] that could be easily traced in infants.

Table 1 reported the maximum foci localization in millimetres in the AC-PC coordinate sys-
tem for infants and in Talairach space for adults, and the respective Z-score for areas that were
identified in all adults and in most infants. For multiple foci areas, the coordinates corre-
sponded to the positions of the centre of mass of the aggregate ROIs. In particular, for the
occipital activities we reported the union of the bilateral activations of V1 (V1-seed) (reporting
the average coordinates of the two foci); an area located dorsally just posterior of the parietal-
occipital sulcus, which in adults correspond to the union of V6 and V6A; an area positioned
posteriorly in Pre-Cuneus/Cuneus, close to the parieto-occipital sulcus and anterior of the
most extreme periphery of V1/V2. This area could be the human equivalent of the pro-striate
[81], not to be confused with the Pre-Cuneus selective motion area reported by Cardin et al
[39,82]. Many other occipital activation sites were labelled in response to coherent versus flow
motion in the mask, but given the difficulties in distinguishing between them and locating
them in all the sulci, we decided not to report or analyse them in detail. The area MT+ was the
easiest to locate along the inferior temporal sulcus, both in adults and infants. In adults, this
ROI includes MT and MST. An area showing a differential response to coherent versus inco-
herent motion was labelled in the fundus of the most apical portion of the posterior insula, cor-
responding to the PIC+ complex of the visual-vestibular network [39–41,43,44]. The complex
comprises two different foci named PIVC and PIC respectively, that can be differentiated on
the selectivity to vestibular stimulation. We labelled this area as PIVC/PIC given that we used
only visual and not vestibular stimulation.

For each ROI, and for both the first (coherent flow-motion versus blank) and the second
stimulus (coherent versus random flow-motion), we extracted the time-courses averaged
across periods of repetition, and then across subjects. We also evaluated the Signal to Noise
ratio (S/N) and the phase of the response, performing an FFT on the extracted time-course
before averaging. S/N was defined as the amplitude of the ratio of the fundamental harmonic
and the root-mean-squared amplitude of the two frequencies closest to the fundamental [83].
The phase of the response is a good measure of the hemodynamic delay. In adults, a standard
hemodynamic model corresponds to a phase value of 64 deg in our plots. The relationship
between the phases of the responses across different areas and single subjects is reported in S3
Fig, both for infants and adults. To evaluate statistical significance between the adult and infant
phases of the responses for each ROIs, we calculated the distances of each vector data point
from the resultant of the vectorial average and its standard deviation. Then assuming a normal
spread, we calculated the variation in phase associated with the predicted 2-D Normal disper-
sion of data around the average. Results of average, SD and t-tests are reported in S1 Table.

In order to consider the infants as a homogenous group, inter-subjects alignment was per-
formed. In particular, the obtained atlas and the volumetric dataset of each subject were co-reg-
istered (by affine transformation) to one single subject (MG) with optimal quality of the
anatomical image. The same transformations, one for each subject, were in turn applied to the
respective functional data. One subject (DE) was discarded from this kind of analysis for poor
quality of three-dimensional anatomical dataset. The 11 co-registered functional datasets were
used for a multi-subjects analysis of the infants group, by using a fixed–effect (FFX) GLM-
based analysis and a statistical threshold corrected for False Discovery Rate (FDR) q< 0.05
and a minimum cluster size of 81 mm3, corresponding to three functional voxels (Fig 5, left
panel). Similarly a fixed–effect (FFX) GLM-based analysis at the same statistical threshold of
(FDR)< 0.05 and a minimum cluster size of 135 mm3 was performed also on adult data, after
co-registration in Talairach space (Fig 5, right panel). In both infant and adult multi-subjects
GLM analysis, no mask was applied. In agreement with previous work that show a great
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variability of the PIC+ complex location and selectivity between subjects [43], the statistical
threshold of the multi-subject GLM had to be reduced to p< 0.05 uncorrected before activity
of similar cluster-size could be identified at the expected PIVC/PIC anatomical location in
infants and in adults.

Resting state series were used to study the correlation between the ROIs described above.
For each subject and for each pair of ROIs, the cross correlation of the signals extracted in the
resting state was calculated and the value reported in the correlation matrix. Note that given
the high-pass temporal filtering the functional connectivity maps could also show a negative
correlation. The striking negative correlation between V1 and MT+ in adults that is often
reported also depends on the state of the subject (fixation versus eyes-closed) [56]. Note that
the resting state in infants, but not in adults, was acquired during sleep. Two mean correlation
matrices were obtained averaging the single-subject matrices for infants and adults, respec-
tively. In order to achieve a value of significance for each value in the mean correlation matri-
ces, for each group of subjects, the signals of all single subjects were normalized and
concatenated, obtaining the signal of a super-subject for each ROI. The calculation of cross cor-
relation of these signals between each pair of ROIs corresponds to the average across subjects
of the correlation matrices and gives the significance of the values in terms of p-value. Statisti-
cal analysis (two-tailed t-test) was performed between correlation matrices of the two groups of
subjects.

Supporting Information
S1 Data. The dataset with original data for each of the figures in the manuscript and sup-
porting information.
(XLSX)

S2 Data. The dataset contains the Brain Voyager t-value images (nifti-1 format) of the sta-
tistical maps of Fig 4.
(ZIP)

S3 Data. The dataset contains the Brain Voyager R-value images (nifti-1 format) of the cor-
relation maps of S2 Fig.
(ZIP)

S4 Data. The dataset contains the DARTEL infant brain atlas (analyse format) showed in
S4 Fig.
(ZIP)

S1 Fig. Average time-course across subjects and individual Signal to Noise ratio for V1
seed area. A: Average time-course for V1 seed in infants (left) and adults (right) for the high
contrast flow-motion versus blank stimulus of equal luminance (p< 0.001 in infant and
p< 10−10 in adults). The bars show ±1 sem, the grey bar indicates the duration of coherent
motion. B: Signal to Noise ratio polar plot for individual subjects (left column infants, right col-
umn adults). The phases of the polar plot data are similar for adults and infants, indicating that
BOLD responses have a comparable hemodynamic (S1 Table). Filled symbols correspond to
p< 0.01, open to 0.01< p< 0.05 threshold. (V1: primary visual cortex; s: seconds.) Numerical
data are available in S1 Data, S1 Fig.
(TIF)

S2 Fig. Examples of correlation maps used as functional mask. Examples of correlation
maps for the infants (CT and MG in Fig 1; FG and CG in Fig 2) used as functional mask in the
General Linear Model for coherent flow versus random motion. Maps were calculated by using
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the cross-correlation of the V1 response to flow-motion versus blank (V1-seed) with the
response of all brain voxels, using 0s temporal delays and imposing a threshold value of
p< 0.05 (corresponding to a R value> |0.25|, as indicated in the colour bar). For each infants,
the V1-seed ROI is depicted in purple. The numbers on top refer to the “z” coordinate of each
column, the distance along the z-direction, in millimetres, from the AC point. R-L in radiologi-
cal convention. (R: right; L: left; AC: anterior commissure.) Data of the statistical maps are
available in S3 Data.
(TIF)

S3 Fig. Comparison of the individual BOLD response phases for the various stimuli for
each ROI. Top panel: Flow motion versus random motion; bottom panel: flow motion versus
blank; infants on the left column, adults on the right column. Corresponding data points of
ROIs in the two hemispheres (MT, V6, PIVC/PIC) were connected by a line, with the left point
referring to the right hemisphere. Each colour corresponds to a single subject given by the leg-
end below the figure. Note that phases were consistent across homologous areas for each single
subject. V1-seed had a consistent phase for the coherent flow motion versus blank in adults
and infants, but varied considerably for the coherent versus random flow motion in infants but
not in adults. For statistical significance tests see the main text. For MT and V6 ROIs the phases
of five infants are positive in response of coherent flow versus random motion, but negative in
response to flow motion versus blank, suggesting that negative bold may be stimulus depen-
dent and specific to contrast modulation. (V1s: primary visual cortex seed; MT+: temporo-
occipital complex; V6: Visual area six on medial-parieto-occipital region; PIVC/PIC: posterior
insular vestibular cortex/posterior insular cortex; PCu/Cu: Pre-Cuneus/Cuneus; deg: degrees.)
Numerical data are available in S1 Data, S3 Fig.
(TIF)

S4 Fig. Infant brain atlas. Axial sections of the brain atlas obtained by the DARTEL algorithm,
using anatomical T1- weighted images of twelve infants (mean age = 7.8 ± 1.2 wk). The loca-
tion along the z-direction of each axial slice is reported in millimetres from the AC point (z
coordinate as in Table 1 main text). (R: right; L: left; AC: anterior commissure.) Data are avail-
able in S4 Data.
(TIF)

S1 Movie. Example of motion stimuli. The initial segments show an example of the motion
stimuli used in the infant fMRI experiment, with the first 7 s showing randommotion and the
subsequent 7 s the coherent flow. Note the strong vection perception elicited by the coherent
flow. The segments from 15 s to 52 s show an example of the recorded eye movements of an
infant during the presentation of the coherent versus randommotion. Note the reflection of
the stimuli on the infant’s forehead.
(WMV)

S1 Table. Phase of the vectorial average across subject for each ROIs. Phase (in degrees) of
the resultant vector from the vectorial average of all data of Figs 1, 3 and S1. The resultant vec-
tors were calculated for infants (left) and adults (middle), combining left and right hemi-
spheres. For variance estimation, we calculated the distances of each vector data point from the
resultant of the vectorial average and its standard deviation. From the predicted 2-D Normal
dispersion of points around the average, we calculated the corresponding variation in phase.
For each ROI, the table reports mean phases of the responses to coherent versus random flow
motion (random) and also the mean phases of the responses to coherent flow-motion versus
blank for V1-seed. On the right, results of two-tailed t-tests performed between infant and
adult data. Phases are in degrees. Two levels of statistical significance are shown: p< 0.05 (�)
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and p< 0.001 (���). (MT+: temporo-occipital complex; V6: Visual area six on medial-parieto-
occipital region; PIVC: posterior insular vestibular cortex; PCu/Cu: Pre-Cuneus/Cuneus; V1:
primary visual cortex; SD: standard deviation; N: number of data points; p: p-value; t: t value;
DoF: degrees of freedom.)
(XLSX)

S2 Table. Estimation of head movement for each subject. Evaluation of head movement for
each infant (top) and adult (bottom) in the used time courses recorded during the coherent
flow motion versus blank (A), the coherent versus random flow-motion (B) and during the
resting-state condition (C). For A and B, half stimuli periodicity intervals of time courses with
movements of translation greater than 4 mm along any directions (X, Y, Z, columns on the
left) or with rotations greater than 5° respective to any axis (X, Y, Z, columns on the right) were
cut and discarded; for C, single data points with above-threshold movement were discarded.
The table reported the mean and standard deviation of the six rigid body parameters as well as
the registered maxima value for translation and rotation. (mm: millimetres; deg: degrees;
SD = standard deviation; max: maximum.)
(XLSX)
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