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The world tends to be stable from moment to moment, leading to strong

serial correlations in natural scenes. As similar stimuli usually require similar

behavioural responses, it is highly likely that the brain has developed strat-

egies to leverage these regularities. A good deal of recent psychophysical

evidence is beginning to show that the brain is sensitive to serial correlations,

causing strong drifts in observer responses towards previously seen stimuli.

However, it is still not clear that this tendency leads to a functional advan-

tage. Here, we test a formal model of optimal serial dependence and show

that as predicted, serial dependence in an orientation reproduction task is

dependent on current stimulus reliability, with less precise stimuli, such as

low spatial frequency oblique Gabors, exhibiting the strongest effects. We

also show that serial dependence depends on the similarity between two

successive stimuli, again consistent with the behaviour of an ideal observer

aiming at minimizing reproduction errors. Lastly, we show that serial

dependence leads to faster response times, indicating that the benefits of

serial integration go beyond reproduction error. Overall our data show

that serial dependence has a beneficial role at various levels of perception,

consistent with the idea that the brain exploits the temporal redundancy

of the visual scene as an optimization strategy.
1. Introduction
As most objects in the environment are relatively stable over time, there are large

temporal redundancies in the spatio-temporal flow of information. It has long

been known that sensory systems exploit spatial redundancies by shifting their

responses to match the stimulation statistics [1], but until recently there has been

little evidence as to whether perceptual systems carried over information across time.

Two recent papers [2,3] introduced a new psychophysical paradigm, serial
dependence, which provided direct evidence of how a system incorporates past

information into the perception of the current stimulus. These effects have now

been confirmed with a variety of stimuli and tasks, from simple orientation jud-

gements [3–5], numerosity [2], position [6,7], facial identity and expression [8,9],

eye gaze [10], pulchritude [11] or body size [12], to complex judgements such as

summary statistics [13], variance [14] and confidence [15]. A series of control

experiments showed that serial dependence effects could not be accounted for

by effects such as priming, hysteresis, explicit memory or expectation. Further-

more, functional magnetic resonance imaging results [16] have shown that

neural representations in the primary visual cortex (V1) were biased towards pre-

vious perceptual decisions, demonstrating a direct neural correlate of serial

dependence, and suggesting that the effects occur early in primary visual cortex.

In non-symbolic numerosity judgements, serial dependence effects were found

to be strong enough to compress the subjective spatial representation of numbers

[2], an effect previously thought to reflect the logarithmic encoding of numbers

[17]. The compression is a direct result of the fact that not all stimuli have the

same level of dependence on the previous presentation: low numerosities, which
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Figure 1. Timeline and stimuli. (a) In experiments 1 and 2 we presented a Gabor stimulus for 500 ms, followed by a mask for 1000 ms and a response oval which
the participants had to adjust in order to match the orientation of the Gabor and then confirming their response by pressing the spacebar of the keyboard. In
experiment 1, the orientation and spatial frequency (SF) of the Gabor were manipulated in a 2 � 2 design. Stimulus orientation in ‘oblique’ conditions was close to
the diagonal ( from 258 to 658, in steps of 108), whereas in ‘cardinal’ conditions it was close to vertical (2208 to þ 208, in steps of 108). The spatial frequency of
the Gabor was either 0.3 or 1.2 cycles per degree (cpd) in ‘low SF’ or ‘high SF’ conditions respectively. In experiment 2, the orientation of the Gabor was all around
the clock in steps of 158 and the spatial frequency was fixed at 0.3 cpd. (b) In experiment 1 in separate sessions we asked a 2-AFC orientation judgement task, of
two Gabors followed by a mask and separated by 3000 ms; participants were asked to indicate which was more clockwise. (Online version in colour.)
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are reproduced more reliably (with less variability) than higher

numerosities, showed less serial dependence. This suggests that

serial dependence is related to the reliability of the current

sensory information, which prompted a model where serial

dependence becomes a form of response optimization.

Here we develop an ideal observer model and test its pre-

dictions with an orientation reproduction task. To this aim,

we first test if serial dependence is stronger with less reliable

stimuli, varying reliability by varying the orientation and

spatial frequency of grating patches [18,19]. We then explore

how serial dependence changes as a function of inter-stimu-

lus orientation change. We also show that besides reducing

error, serial dependence leads to faster responses. All this evi-

dence shows that serial dependence increases the accrual of

sensory information, improving efficiency.
2. Methods
(a) General procedure
The study was approved by the Regional Ethics Committee (Comi-

tato Etico Pediatrico Regionale-Azienda Ospedaliero Universitaria

Meyer-Firenze) and was in accordance with the ethical standards

of the 1964 Declaration of Helsinki. Informed written consent

was obtained from each participant prior to the experiments. Ten

participants (two authors plus four naive observers for experiment

1, two authors plus four naive for experiment 2; mean age¼ 31,

range ¼ 28–41), all with normal or corrected-to-normal vision

participated in the study.

Stimuli were presented on the face of a calibrated 23 inch LCD

monitor subtending 268 (horizontal) by 14.58. Stimuli were gener-

ated using MATLAB (the MathWorks, Natick, MA) in conjunction

with routines from the PSYCHTOOLBOX [20]. Responses were col-

lected via a standard mouse and keyboard connected via USB to

a PC yielding a temporal resolution of 4 ms.

(b) Experiment 1
Experiment 1 investigates the effect of stimulus reliability on serial

dependence by manipulating the orientation and spatial frequency
of the Gabor patch in a 2 � 2 design. Stimulus orientation was

either oblique (close to the diagonal: 258–658 in steps of 108) or car-

dinal (close to vertical: 2208 to þ208, in steps of 108). The spatial

frequency of the Gabor also varied; either 0.3 or 1.2 cycles per

degree (cpd). Following Fischer & Whitney [3], the spatial fre-

quency content of the mask was matched to that of the stimulus.

The experimental paradigm (figure 1a) was a close replication

of the adjustment paradigms of Fischer & Whitney [3]. Each trial

began with the presentation of an eccentric Gabor stimulus (con-

trast 25%, 500 ms, 3.28 full-width half-height), followed by a

mask (random noise filtered, contrast 50%, 1000 ms) rightward of

fixation (88 horizontal, 48 vertical eccentricity). Participants were

instructed to reproduce the orientation of the Gabor patch by

moving the mouse and setting the orientation of an oval (width

0.28, length 18). Participants confirmed the orientation with the

space bar of the keyboard and the reproduction bar disappeared.

We expressed the strength of serial dependence as the weight of

the previous orientation on the current judgement (figure 3e–h). To

combine various conditions, we plotted reproduction bias (current

reproduced orientation minus current stimulus orientation) on the

ordinate against the orientation change across trials (orientation of

the previous minus orientation of the current stimulus) on the

abscissa. We excluded responses more than 3.5 s after the disap-

pearance of the Gabor patch and also those deviating more than

308 from the physical orientation of the patch. A simple linear fit

provides an estimate of the loading of previous orientation on cur-

rent error. As serial effects are predicted and found to be maximal

for relatively small stimulus differences [3,5] (see equation (3.1)), we

restricted our linear fitting to trial pairs where the orientation chan-

ged between the previous stimulus and the current response was

between 2108 and þ108. Six subjects took part in the experiment

each contributing 280 trials to each condition.

The same participants also performed a two-alternative

forced choice (2-AFC) orientation judgement task to measure

individual sensitivity (figure 1b). To mimic the typical serial

dependence paradigm, we presented Gabors sequentially, so

that only a single stimulus was present at a given time. Stimulus

parameters, position and mask were the same as in the reproduc-

tion task. The two presentations were separated by a 3 s pause,

which was the average temporal separation of stimuli in the

serial dependence studies. Proportion of ‘more clockwise’

responses (of 80 trials participant21) were plotted as a function

http://rspb.royalsocietypublishing.org/
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of orientation difference between the first and the second stimu-

lus to yield psychometric functions, which were fitted with

cumulative Gaussians. The standard deviation (s) of these func-

tions is an estimate of the underlying noise distribution. As there

were two stimulus presentations in each trial, the final estimate

of reliability was given by given by s/
p

2.

(c) Experiment 2
Experiment 2 studied how serial dependence varies with similarity

of stimuli. We presented all possible orientations in steps of 158
keeping spatial frequency fixed at 0.3 cpd (figure 1a), with all

other parameters and timings the same as in experiment 1. Data

were arranged in a two-dimensional space according to the orien-

tation of the current and previous stimulus. For each combination

of the two values, we calculated the average bias, the average root-

mean-square error and average response time. To gain power in

the analysis, we then averaged together the conditions with the

same ‘previous-current’ orientation difference. By convention

positive difference indicates that the previous trial was more clock-

wise than the current. Six participants completed the experiment

leading to about 12 000 trials in total.
 2
3. Results
(a) Ideal observer model
Here we develop a model predicting how serial dependence can

lead to optimal performance, gauged by measuring the deviation

from correct responses in the face of sensory noise. The literature

on multisensory integration and regression to the mean suggests

that any sensory representation which can be characterized by

noise can benefit when other information is taken into account

[21–25]. Similarly, our model is essentially a weighted sum of

the current and previous stimulus, to reduce noisiness:

Rcurr ¼ wprevSprev þ ð1� wprevÞScurr, ð3:1Þ

where Rcurr is the response to the current stimulus. Current and

previous stimuli are Scurr and Sprev, the weight of the previous

stimulus is wprev.

In general, when an observer combines two signals there

is a reduction of uncertainty as the overall variance is

VAR ¼ w2
prevs

2
prev þ ð1� wprevÞ2s2

curr, ð3:2Þ

which is smaller than either of the two variances alone. At the

same time, a linear combination may introduce a detrimental

biasing term:

BIAS ¼ wprevd, ð3:3Þ

which is proportional to the weight of the other cue and the

distance between the two cues. Overall the total squared error

is given by their sum (figure 2h):

ERR ¼ BIAS2 þ VAR, ð3:4Þ

optimization entails the minimization of this quantity by

selecting the appropriate w:

ERR ¼w2
prevd2 þ w2

prevs
2
prev þ ð1� wprevÞ2s2

curr

¼w2
prevd2 þ w2

prevs
2
prev þ s2

curr � 2wprevs
2
curr þ w2

prevs
2
curr:

Rearranging so to highlight wprev (the term to margina-

lize) yields

ERR ¼ ðd2 þ s2
prev þ s2

currÞw2
prev � 2s2

currwprev þ s2
curr, ð3:5Þ
which is a quadratic function of wprev (i.e. y ¼ ax2 þ bxþ c)

which is minimized when

wprev ¼
s2

curr

s2
curr þ s2

prev þ d2
, ð3:6Þ

(i.e. for x ¼ 2b/2a).

When reliabilities of previous and current stimuli are the

same, this can be simplified to

wprev ¼
1

2þ ðd=sÞ2
, ð3:7Þ

which reveals that the crucial variable is the ratio between the

stimulus change and the sensory resolution.

The core idea of the model is illustrated in the example

scenarios of figure 2a–d. The leftmost column shows hypo-

thetical distributions of sensory representations of a currently

displayed stimulus orientated at 408, for which the resolution

variability is 108 (figure 2a, grey). This information could in

principle be used either alone or in conjunction with that

from the previous stimulus which, in this example, was 108
away (mean ¼ 308, s.d. ¼ 108). If the observer uses the optimal

weight (w ¼ 0.33), the combined distributions of response esti-

mates (given by the weighted product of the two original

distributions) are slightly off the correct value, but also

narrower (pink distribution in figure 2a). The lower plot

(figure 2c) shows the distribution of overall squared error, cal-

culated as the product of the magnitude of the error and the

probability of its occurrence (figure 2a, grey). If the current sen-

sory representation is used on its own (grey), the error

distribution will be symmetrically bimodal. However, if the

previous stimulus is combined in an optimal manner, with a

weighting of 0.33 (pink distribution of figure 2c), the error dis-

tribution will become asymmetric, shifting to the left; but it will

also become narrower, so the overall error (given by the area

under the curve) is less than for the grey curve.

An important aspect of the model is that the weight given

to the previous representation should be scaled down as the

difference between past and present stimuli (d of equation

(2.7)) increases. To illustrate this, we simulate a condition

where a very different previous stimulus (408 more tilted) is

combined with the present with an inappropriately high

weighting of 0.33. The response distribution for the combined

information is similarly narrower than either distribution alone

(yellow distribution in figure 2b). However, the bias is now

much larger (about 138 instead of 38), and it produces squared

error distributions that are very high, far higher than that for

just considering the current stimulus. Clearly, a weighting of

0.33 for such large inter-stimulus distances is not optimal.

Indeed, our formula prescribes that for 408 difference, the

weight of the past should only be 0.056 (purple star in

figure 2e–g).

Figure 2e shows the optimal weight as a function of orien-

tation difference. The theoretical considerations above

suggest that for very small differences the weight should be

0.5 (equal for past and present), then roll off as stimulus dis-

tance increases. Figure 2f shows the corresponding biasing

errors, which are reminiscent of those found by Fischer &

Whitney [3]. Figure 2g shows the overall root-mean-square

error (RMSE) as function of stimulus distance, with the best

performance obtained when two successive stimuli are iden-

tical, and thus serial effects are maximal. Many of these

signatures are evident in published data. Here, we aim to

http://rspb.royalsocietypublishing.org/
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test directly various aspects of the model, showing that serial

dependence leads to optimizing perception.
(b) Experiment 1
We measured sensitivity and serial dependence in orienta-

tion judgements for four types of Gabor stimuli differing

in average orientation (oblique, cardinal) and spatial

frequency (low, high). Figure 3a–d shows psychometric func-

tions for discriminating the orientation of the four types of

stimuli. It is clear that the steepness of the psychometric func-

tions depends on both spatial frequency and orientation: they

are steeper (implying higher sensitivity) for cardinal stimuli

of high spatial frequency, and shallower for oblique stimuli

of low spatial frequency. Average just-noticeable differences

(JNDs) (given by 1 s.d. of the cumulative Gaussian fit) are

given in figure 3a–d. A two-way repeated measures

ANOVA confirmed that high spatial frequencies yield lower

thresholds than low spatial frequencies (F1,5 ¼ 67.8, p ¼
0.0004) and that cardinal stimuli yield lower thresholds
than oblique stimuli (F1,5 ¼ 21.3, p ¼ 0.006). No significant

interaction was found (F1,5 ¼ 1.34, p ¼ 0.30).

Figure 3e–h shows serial dependence for the four types of

stimuli. In all cases, the current trial was biased towards the

orientation of the previous trial: positive when it was posi-

tive, and negative when negative. We calculate the weights

of the past stimuli by the slope of the best-fitting linear

regression to the three data points. The estimated weights

(shown in figure 3e–h) increase orderly from weakest serial

dependence for high spatial frequency cardinal Gabors to

highest effects with the low spatial frequency oblique

Gabors. A two-way repeated measures ANOVA shows a

main effect both of spatial frequency (F1,5 ¼ 9.4, p ¼ 0.028)

and average orientation (F1,5 ¼ 7.2, p ¼ 0.044). No significant

interaction was found (F1,5 ¼ 0.001, p ¼ 0.97). This indicates

that both factors have a strong and independent effect upon

serial dependence.

To better explore the relationship between serial effects

and sensory thresholds, we plot the strength of the serial

effect against the discrimination threshold for all conditions

http://rspb.royalsocietypublishing.org/
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and participants (figure 4). Superimposed on the data is the

prediction of the ideal observer model of equation (3.1),

which aims to minimize reproduction errors, considering

both sensory noisiness and inter-stimulus distance. Note

that there are no free parameters in this simulation, yet it fol-

lows the trend of the data very well (R2 ¼ 0.21). If we allow a

simple scaling factor of k ¼ 0.75 (which could reflect underes-

timation by the system of its noisiness, or corruption of the

memory trace), the fit improves to R2 ¼ 0.58.
(c) Experiment 2
Fischer & Whitney’s initial report [3] showed that serial

dependence is strongest when two successive stimuli are rela-

tively similar. This fact is well captured by our ideal observer

model, with the term d2on the denominator. To test further

whether the model could predict this behaviour quantitat-

ively, we measured serial dependence with low spatial

frequency Gabors (which yield largest serial dependence

effects) at all possible orientations in steps of 158. Figure 5a
shows the signed error in the current trial as a function of

orientation difference between the previous stimulus and

the current response. As reported by Fischer & Whitney [3],

the maximum bias occurs at about 158 and scales down

when stimulus differences are larger. The black curve

shows the prediction of our ideal observer model to the aver-

age data across all orientations. Since in this experiment we

did not collect independent measures of sensory resolution

we employed the average sensory resolution for low spatial

frequency stimuli in the previous experiment (6.78). It is

clear how the model provides a good match to the data, in

particular in the central region (from –60 to þ608), where

the fit is very good fit (R2 ¼ 0.75).

The Bayesian-based ideal observer model reduces overall

error in discriminating noisy sensory inputs [22,24,26] by

averaging successive noisy stimuli (figure 2). Figure 5c plots

the average response scatter (root variance) as a function of

the difference in orientation between the current and pre-

vious stimuli. When two orientations are identical (d ¼ 0),

responses are less scattered, about 15% less than when stimuli

are 158, 308 or 458 different (worst t-test is 215 versus 0

t5¼ 22.6 p , 0.025). This is a clear signature of automatic

averaging effects in the perceptual system. The black curve

in figure 5c shows the predicted scatter of the ideal observer

model, using the model employed in figure 5a (again assum-

ing that the average sensory resolution is 6.78), with the only

http://rspb.royalsocietypublishing.org/
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extra assumption that the response adds a constant noise to

all of the trials (adjusted to best-fit, about 6.28). The model,

with only one degree of freedom, captures well the pattern

of data (R2 ¼ 0.74). Figure 5d plots scatter independently

for near cardinal and near oblique stimuli. As expected, the

scatter in this condition inherits the amount of perceptual

noise associated with each stimulus and near oblique stimuli

have more response scatter. Again, the ideal observer (dashed

lines), with sensory resolutions of s ¼ 5.6 and 8.28 for cardi-

nal and oblique, and 6.28 of motor noise fixed from the fit of

figure 5c provides a very good description of the data (R2 ¼

0.77 and R2 ¼ 0.81 for oblique and cardinal).

Figure 6a plots root mean-square error (RMSE), or total

error in the reproduction responses as a function of the stimu-

lus orientation difference between trials. RMSE is given by the

Pythagorean sum of biasing errors and scatter errors, displayed

independently in figure 5a,c (see illustration in figure 2h and

equation (3.4)). This plot demonstrates the optimality of the

model and the observer responses. Consistently with the pre-

dictions of the ideal observer, when two successive stimuli

are identical (d ¼ 0), serial dependencies should be at their

highest yielding minimal error, which is what is found.

Although we did not ask subjects to make speeded

responses, it is possible that the conditions which resulted in

less error were accompanied by longer response times

(speed-accuracy trade-off). We therefore plot median response

times in figure 6b. The response times show a clear minimum

for identical successive stimuli and increasing with orientation

difference (figure 6b). Figure 6c plots one quantity against the
other, revealing how when two successive stimuli are identical

there is a benefit along both dimensions and ruling out speed-

accuracy trade-offs. This also shows that serial dependence can

lead to increased efficiency, not only for error, but also for the

more conventional measure of reaction times.
4. Discussion
In this paper, we tested explicitly a model for response optim-

ization that leverages on the previous stimulus to minimize

response errors. The model was first developed to explain

mapping number to space [2], adapted here for orientation

reproduction. We show that serial dependence complies

fully with the predictions of the Bayesian inference model.

On one hand, we demonstrate that serial effects scale with

stimulus uncertainty and similarity of current and previous

stimuli; on the other, we show that both reproduction

errors and reaction times are lower when serial dependence

is strong, showing it is beneficial.

The first prediction of our model is that serial dependence

scales with sensory uncertainty (figure 2e). We measured serial

dependence and sensory discrimination thresholds for four

types of Gabors varying in orientation and spatial frequency

and found that they vary together. This result confirms our sug-

gestion that oblique and cardinal stimuli have different serial

effects, reflecting their different reliabilities [5,18,19,27]. The

model simulated these effects well, using the measured esti-

mates of noise, and hence no free parameters. This result

http://rspb.royalsocietypublishing.org/
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extends our previous work on numerosity perception, where the

model provided an excellent fit [2], and shows that it generalizes

well to other perceptual tasks such as orientation reproduction. It

suggests that stimulus uncertainty is the major driving effect of

serial effects regardless of the source of noise.

We also replicate and model the tuning of serial depen-

dence (figure 5) [3,4], an important feature as it proscribes

integration of dissimilar stimuli, which could lead to large

estimation errors. The model is not perfect, especially for

large differences in orientations (around 608), where it tends

to predict more serial dependence than is actually observed.

This may reflect inadequacies of the model, or the fact that

the system does not have direct access to the model par-

ameters (discussed below). However, the model does

capture the fact that dissimilar features tend not to be inte-

grated, a fact often observed in research into multisensory

fusion: diverse stimuli are usually not integrated [28–30].

This points to stimulus similarity as a general perceptual

rule, which is implemented in many systems and may be

an important hallmark of the neural implementation of Baye-

sian processes. Interestingly our model gives some indication

of appropriate parameters for measuring serial dependence.

When the difference between stimuli is about 1 JND (s ¼ d
in equation (3.7)), we expect the weight of the previous

stimulus to be about 0.3.

Our model is an ideal observer model, developed to mini-

mize total reproduction error (equation (3.5)). This results in a

simple equation (equation (3.6)), where the theoretical

weighting to the past depends on the reliability of past and

present stimuli, and on their similarity. This is ideal. How-

ever, observers do not have access to the ground truth,

either of the reliability of the stimuli or of the actual difference

between them. All these parameters would need to be esti-

mated in some way, and the estimation itself would not be

noise-free. Several ideas have been advanced on how the

system may extract an estimate of internal noisiness [31],

and also of similarity [30], especially in multisensory research

where this has long been acknowledged as a problem.

Typically, researchers assume there is a ‘coupling prior’

[32], which they estimate from their data. We do not propose

here any specific method of estimation, but rather use a theor-

etical value that should optimize performance. That this

works well in predicting the data suggests that the system
does have access to estimates of both noisiness and similarity

of successive stimuli, although the mechanisms by which the

parameters are estimated remain unknown and should be the

subject of further research.

Importantly, serial dependence leads to an improvement of

overall performance measured by response scatter (figure 5).

This could only occur if noisiness were reduced by the inte-

gration of information over trails. Reduction of response

scatter, as well as of overall response error (figures 5 and 6)

was well predicted by our model and is in line with the Baye-

sian framework. Recently, a debate has emerged about

whether serial dependence acts at the level of perception, or

at the level of decision processes [3–6,33]. This distinction is

fundamental in understanding the role of serial dependence

for perception in general: if it acts only on decisional processes,

it may have little to do with perception itself. The paradigms

used here do not attempt to distinguish ‘perception’ from

‘decision’. Indeed, to model the data we measured perceptual

reliability with a forced choice technique that emulated the con-

ditions of the main experiments, including a 3 s pause between

stimuli. Thus the measured noise includes not only sensory

components of encoding the stimuli, but also effects that

could reflect short-term memory, over the 3 s interval between

trials. However, the fact that both data and model show very

clear improvement in performance suggests that the serial

dependence does not only bias perceptual decisions, but acts

to improve perceptual efficiency, presumably by acting on

perceptual processes themselves.

Our results also show that serial dependence can lead to

decreases in reaction times. This is result was unexpected and

shows that the error reduction is genuine and not simply the

by-product of a speed-accuracy trade-off. Although the con-

ditions of our experiment are far from ideal (because we

did not explicitly request speeded responses), the results

still suggest that serial dependence may facilitate the accrual

of information over time for the reproduction task. This fact

helps to relate the recent research line of serial dependence

to the older priming literature, which has long documented

speedup of responses when current presentations were

primed by a suitable stimulus [34–37]. This is particularly

obvious for examples when the term ‘priming’ has referred

to low-level attentional selection [36,37], and has been con-

ceived as a general perceptual process. Our demonstration

http://rspb.royalsocietypublishing.org/
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that serial dependencies speed-up response times in a repro-

duction task show that biases in perception may well go hand

in hand with perceptual distortions. After all, it is now

becoming clear that the various processing stages of the

brain accumulate evidence, and an alteration in lower-level

representations that improves the quality of information

also impacts on response speed.
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