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Crowding of oriented signals has been explained as linear, compulsory averaging of the signals from tar-
get and flankers [Parkes, L., Lund, J., Angelucci, A., Solomon, J. A., & Morgan, M. (2001). Compulsory aver-
aging of crowded orientation signals in human vision. Nature Neuroscience, 4(7), 739–744]. On the other
hand, a comparable search task with sparse stimuli is well modeled by a ‘Signed–Max’ rule that integrates
non-linearly local tilt estimates [Baldassi, S., & Verghese, P. (2002). Comparing integration rules in visual
search. Journal of Vision, 2(8), 559–570], as reflected by the bimodality of the distributions of reported tilts
in a magnitude matching task [Baldassi, S., Megna, N., & Burr, D. C. (2006). Visual clutter causes high-mag-
nitude errors. PLoS Biology, 4(3), e56]. This study compares the two models in the context of crowding by
using a magnitude matching task, to measure distributions of perceived target angles and a localization
task, to probe the degree of access to local information. Response distributions were bimodal, implying
uncertainty, only in the presence of abutting flankers. Localization of the target is relatively preserved
but it quantitatively falls in between the predictions of the two models, possibly suggesting local averag-
ing followed by a max operation. This challenges the notion of global averaging and suggests some con-
scious access to local orientation estimates.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Identifying a target in a cluttered visual scene can be a very dif-
ficult task. Moving the stimulus to the periphery of the visual field,
decreasing the size of the elements and the distance among them
makes such a task even harder. This effect is called crowding.

In a study that is directly connected to our present investiga-
tions, Parkes, Lund, Angelucci, Solomon, and Morgan (2001) have
investigated the effect of crowding on simple feature processing.
They measured the effect on orientation discrimination thresholds
of flanking a small tilted target in the periphery with a number of
oriented elements all displaced within the spatial range of crowd-
ing. Keeping the overall number of elements fixed, they increased
gradually the number of flankers that were tilted like the target.
They observed that thresholds were reduced linearly (on log–log
scales) with increasing number of tilted flankers, even though
observers knew that they only had to judge the target that was sit-
ting centrally on the array of Gabor patches (see Fig. 1). In a sepa-
rate task, they tilted three out of nine elements according to a
vertical vs. a horizontal configural arrangement and observers
were asked to identify the orientation of the configuration; a task
ll rights reserved.
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implying that observers localized individual patches. This task
was very difficult to perform. The results of this study have led
to the suggestion that crowding of individual features, such as ori-
entation, can be explained as a compulsory averaging of informa-
tion from targets and flankers before the site of conscious
evaluation of the target tilt (Parkes et al., 2001). In its strictest
form, this model assumes that the system averages orientation
estimates for all targets and flankers. Since in this task the number
of elements (tilted plus vertical) was fixed to nine, the overall
amount of noise is constant, while the signal that each tilted patch
should carry, in order for the observer to reach threshold, de-
creases linearly with the number of positive signals (i.e. tilted
flankers) introduced (for details see Parkes et al., 2001). A funda-
mental consequence of this model is that, within the range of
crowding, it is impossible to segregate individual visual targets
by having access to their information in isolation. A similar averag-
ing rule has been suggested in the domain of textural integration
and visual search (Baldassi & Burr, 2000; Dakin & Watt, 1997; Mor-
gan, Ward, & Castet, 1998). However, in the domain of visual
search a very similar effect on orientation discrimination thresh-
olds is predicted by a version of the Max of Outputs rule (Palmer,
1994; Palmer, Ames, & Lindsey, 1993) developed for ‘two-tailed’
orientation discrimination tasks, in which the target randomly as-
sumes one of two possible values around a reference (e.g. CW or
CCW tilts away from vertical). This model assumes that each
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Fig. 1. Experimental sequence and stimuli. The stimuli matched exactly the
parameters of Parkes et al. (2001) but were shown according to a vertical, rather
than horizontal reference. After the stimulus display, a response page was shown
requiring one of two alternative tasks. In the magnitude matching task, observers
were presented with 12 response probes whose tilt corresponded to the stimulus
set from which the target tilt was sampled. In the magnitude estimation task the
response page consisted of a probe resembling the target (but two times larger) that
could be rotated by lateral motion of the mouse. Immediately after the response a
blank page of 400 ms was displayed and the following trial started automatically.
No feedback of any kind was given. One of the observers was tested with an
outlining circle to reduce intrinsic uncertainty.
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stimulus in the array is monitored by at least two detectors (one
for each direction of tilt), whose output is noisy. There is no further
perceptual processing of the display (such as averaging or summa-
tion) and the decision rule is based on the preferred direction of the
detector yielding the strongest response. Because of noise, there
are two main consequences of adding distractors (or flankers) to
the display. The first is that the more vertical elements are in-
cluded in the computation, the more likely it will be that one of
these neutral elements will be signaled as more tilted than the tar-
get, in either the same or the opposite tilt direction. In the latter
case the observer produces an error. The second is that increasing
the number of elements increases the maximum response from
each of the two detectors. This is reflected in the response distribu-
tions as a lack of responses at small tilts and an increase of re-
sponses at high tilt. In other words, the distribution of maxima
from the two oppositely tilted detectors monitored in the task be-
comes more and more bimodal as the number of displayed ele-
ments increases. Baldassi and Verghese (2002) have shown that
this model quantitatively explains both the thresholds and the
change in shape of the psychometric function with set size better
than an Averaging model. Furthermore, Baldassi and Burr (2004)
have shown that it fits well with the observed pop-out of a lumi-
nance target at threshold and with the flattening of the set size
function at high set sizes. Using a novel psychophysical technique
that probes the internal stimulus representation directly, Baldassi,
Megna, and Burr (2006) were able to demonstrate that in sparse
search displays the distribution of reported tilts follows strictly
the predictions of the Signed–Max model. In particular, they re-
ported a unimodal response distribution at set size 1 and an
increasingly more bimodal distribution at physical or cue-defined
set sizes higher than one. Interestingly, the use of an amount of
external noise in the set size one condition so high as to match
the sensitivity of set size eight broadened the width (i.e. the stan-
dard deviation) but not the shape of the distribution, which re-
mained unimodal.

This study is aimed to discriminate between two possible inte-
gration rules in crowding of oriented signals: a linear averaging
rule vs. a non-linear max-of-outputs rule. Since the predicted re-
sponse distributions differ substantially in the two models, in or-
der to pursue this goal we measured internal response
distributions in an orientation crowding task by relying primarily
on the magnitude matching technique used by Baldassi et al.
(2006) in the context of search. In both the present and a previous
study (Baldassi et al., 2006) we have observed that the measure of
the target displayed in isolation showed a response distribution of
gaussian shape, whose parameters depend strictly on the physical
signal (i.e. different tilt offsets from vertical) and on the noise,
converging with the standard psychometric measures. However,
in the presence of multiple stimuli, response distributions re-
vealed the integration rule used to combine several inputs at
the decision stage, by showing predictable patterns of shape
change. Therefore, we assume that any change on the shape of
the distributions with different crowding conditions should reflect
the underlying integration rule. In particular, if crowding of ori-
ented signals relies on compulsory, linear averaging of noisy
information, the measured internal response distributions should
broaden when flankers are displayed, as they are vertical and add
only noise, with no change in shape. On the contrary, if the limits
come from integration rules different from Averaging, this should
reflect into a change of shape of the distributions when the num-
ber of flankers varies.

We did not have specific reasons to commit in advance to a Max
or to any other non-linear integration rule for the crowding task.
However, using a number of converging measures, we show that
the orientation signal carried by a crowded target is combined in
a non-linear fashion and departs in many ways from the predic-
tions of an Averaging model, revealing the signature of some form
of uncertainty over the target identity, combined with an ineffi-
cient use of detectors at very small scales.
2. General methods

2.1. Stimuli and procedure

The parameters of the stimuli used in our study were designed
to reproduce exactly the display used by Parkes et al. (2001). Stim-
uli were generated in Matlab, using Psychophysics Toolbox exten-
sions for Macintosh (Brainard, 1997; Pelli, 1997) and presented
with a Mac G3 computer on a 17” Sony display at 75 Hz refresh
rate. The individual elements were Gabor patches (12 c/deg sinu-
soidal gratings of 90% contrast and 29 cd/m2 mean luminance, win-
dowed within a circular Gaussian aperture of r = 0.083� space
constant), at 2.5� eccentricity. A stimulus set comprised 1 central
target that was always tilted clockwise (CW) or counterclockwise
(CCW) from vertical and that could be displayed alone or sur-
rounded by eight flanking elements. When flankers were dis-
played, they were either all vertical or a proportion of them (2, 5
or 8) could carry the same signal of the target; thus, in different
conditions there were one, three, six and nine out of nine tilted ele-
ments, one of them was the central patch, always tilted. The cen-
ter-to-center separation of the central target from each flanker
was equal to k3

p
2 (where k is one cycle of the carrier grating of

the Gabor stimulus).
In the intrinsic uncertainty control experiment, the Gabor

patches were surrounded by a white annulus of 62 cd/m2 with a
radius equal to about 2r of the encircled Gabor.



Fig. 2. Threshold estimation from the magnitude matching procedure. The graph
represents orientation thresholds as a function of the number of targets, in log–log
axes. The symbols represent the measures for the two observers, while the
continuous and the dashed lines are the predictions of the Averaging and of the
Signed–Max model, respectively. Orientation sensitivity (reciprocal of threshold)
increases with the number of patches having the same tilt as the target. The rise of
performance on log–log axes is close to the predictions of both models for all but
the target alone condition, which is well predicted by the Averaging model while
the Signed–Max model predicts a performance better than the data. These data are
a very good replication of those by Parkes et al. (2001), suggesting that the
magnitude matching and estimation tasks do not alter the decision strategy in any
way.
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In the main experiments, the target assumed one out of 12 pos-
sible orientations (six for each direction of tilt, clockwise or coun-
terclockwise) ranging between ±32�, in step sizes equal to one
octave, and presented the same number of times in random order
within a block according to the method of constant stimuli. This
was a necessary expedient to measure unbiased response distribu-
tions. After the stimulus, each trial included a response page that
allowed the collection of the subject response, according to the
magnitude estimation or the magnitude matching procedure. Dif-
ferent observers used different procedures. In the magnitude
matching measures, observers were asked to indicate the per-
ceived direction and magnitude of tilt of the central target by click-
ing with the mouse on one of the 12 response probes representing
the entire set of possible signals. In the magnitude estimation task
the response page was a probe similar to the target (but twice as
large) that could be rotated as a knob by lateral motion of the
mouse until it matched the perceived tilt of the target. Once the
perceived match was reached, the subject clicked and the current
probe angle was scored. Immediately after the response a blank
page of 400 ms was displayed and the following trial started auto-
matically. No feedback was provided.

In both tasks, we expected the distribution of reported tilts to
probe the distributions of internal noisy states of representation
of the tilt, enabling to assess more directly the mechanism of
crowding of orientation information.

In the location experiment the paradigm was slightly varied so
that one of the flankers was tilted like the target and observers
were required both to locate it – by mouse clicking on its location
– and to estimate the magnitude of its tilt. This second response
was required to check that the modifications introduced in the task
did not alter the observers’ strategy when judging the tilt of the
targets relative to our previous experiments. Note that in this con-
dition there are two targets, the central one and one randomly se-
lected from the crown of the eight flankers.

In the threshold and magnitude estimation tasks, the overall
number of trials, executed in blocks of variable length (60–120)
was about 600, with variability depending on the stability of the
results and the particular condition. One of the observers (CB) per-
formed many more trials (�1800) as he participated in the pilot
phase of the experiment. In the location task observers executed
320 trials.

2.2. Data analysis

We analyzed the data by classifying clockwise vs. counterclock-
wise responses in a standard binary fashion to produce psychomet-
ric functions that were fit with a cumulative gaussian function to
estimate thresholds, corresponding to the level of tilt producing
75% of correct tilt direction judgments. Responses were scored cor-
rect if the sign of the tilt was correctly identified, irrespective of the
magnitude match.

For each observer and each condition, the identification re-
sponses scored by the psychometric function were binned into
three classes of discriminability: below threshold (less than 67%
correct), near threshold (67–83% correct responses) and above
threshold (greater than 83% correct). Only distributions for near
thresholds angles are presented here as they provide the best
information about the shape of the response distributions, free
from floor or ceiling effects (Baldassi et al., 2006). The response dis-
tributions for the magnitude matching procedure were simply con-
stituted by the histogram of perceived tilts given a target angle (i.e.
they were drawn by collapsing all the physical angles yielding near
threshold accuracy). For the magnitude estimation procedure, re-
sponse distributions were drawn by binning the selected probe
tilts into classes providing the best match with the tilts of the mag-
nitude matching procedure. A response distribution (Figs. 3 and 4)
has two sides, one for correct identifications, that is reported tilts
sharing the same direction of off-vertical tilt with the target, and
one for identification errors, that is tilts perceived in the opposite
direction of the target.

2.3. Observers

Eight observers participated in the experiment, four of which
executing only the location experiment. They had normal or cor-
rected to normal vision and they were all naive to the goal of the
study, except for one who was the author (CG). Data for different
target sizes were collected in separate blocks.

3. Results

3.1. Thresholds vs. number of targets

Parkes et al. (2001) used a simple binary task to show that
increasing the number of tilted patches carrying the same tilt
helped performance following a slope of 1 on log–log coordinates.
This result implies crowding; in fact the surrounding elements
influence thresholds even though the observers knew they only
had to judge the tilt of the central element. The result was ex-
plained as compulsory averaging of orientation signals of target
and flankers. In order to compare the outcome of our measures
of response distribution to the results shown in Parkes et al.
(2001), we first verified Parkes et al. (2001) results with our mag-
nitude matching technique.

Fig. 2 shows the orientation discrimination thresholds of two
observers for judging the direction of tilt of a central Gabor patch
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surrounded by an array of eight flankers, of which only a (variable)
proportion carried the same signal of the target.

These results confirm and replicate the results of Parkes et al.
(2001). In particular, the more tilted elements there were in place
of vertical flankers, the better were the thresholds, implying an in-
crease of orientation sensitivity, dropping to 1� for JC and 0.65� for
CB. The rise of performance was very well predicted by the Averag-
ing model (continuous line), as shown by Parkes et al. (2001), even
though the Signed–Max model did as well when the number of tar-
get was higher than 1. When only one target is present the latter
model predicts a better performance than the data, consistently
for both observers. In any case, the good match between our and
Parkes et al.’s results legitimates the use of the magnitude match-
ing technique to further characterize the mechanisms underlying
crowding of oriented signals, in that it leaves the pattern of thresh-
olds unaffected relative to standard, binary psychophysical tasks.

3.2. Matching and estimation of target tilt

In the second stage of our study, we measured the response dis-
tributions for a small peripheral Gabor target at or around threshold
under different crowding regimes: the target alone condition and
the crowded condition, in which the tilted target was flanked by
eight vertical elements. Note that the latter condition is the one that
elicits the strongest crowding effect both in Parkes et al. (2001)
study and in our replication reported in the previous paragraph.

4. Measuring the target alone

This condition was used as baseline for both the measurement
of the crowding effect and that of the response distribution. Three
observers took part in this experiment: CB was tested with the
magnitude matching paradigm, while GB and CG used the magni-
tude estimation paradigm. GB was also tested in a different condi-
Fig. 3. Response distributions for the target alone condition. Each panel plots the propor
three observers (GB was tested in two conditions, see text). Empty symbols, to the left of
Two out of three observers show unimodal distributions, well approximated by gaussian
the basic condition, but she does when the target location is clearly outlined by a circle
tion with an outlining circle around each patch to reduce intrinsic
spatial uncertainty Intrinsic uncertainty refers to an inefficient
channel monitoring due to stimuli that are poorly defined and that
elicit maximum activity in several independent sensory mecha-
nisms, only one of which is actually sensitive to the stimulus (Pelli,
1985; Solomon, 2007a; Solomon, 2007b).

As reported in the Methods section, only distributions for near
thresholds angles are presented here as they provide the best
information about the shape of the response distributions, free
from floor or ceiling effects (Baldassi et al., 2006).

Fig. 3 shows results for all observers in the target alone condi-
tion. The symbols show a histogram of the proportion of reported
tilts for target tilts around threshold (i.e. about 75% of correct iden-
tifications). Empty symbols represent errors and black symbols
correct identifications. The error bars represent the standard error
of the mean (SEM) calculated by bootstrap (Efron & Tibshirani,
1994). When not shown, the SEM is smaller than the symbol.

All observers except one (GB), show unimodal, gaussian-like
distributions as predicted by both models. The solid line represents
the best fitting gaussian function underlying the distributions. The
spread of these distributions was in all cases (except GB’s in the ba-
sic condition) in good agreement with the threshold for the tar-
get alone of each observer, consistent with our assumption that
the distributions we measured corresponded to the internal states
generated by our stimulus as predicted by the Signal Detection
Theory (Green & Swets, 1966). The criterion to decide whether a
distribution was unimodal or bimodal was the following (Baldassi
et al., 2006). The largest positive and negative responses were se-
lected as potential peaks. If any data points between them were
significantly lower than both these peaks (bootstrap t test,
p < 0.01) then the distribution was classified as bimodal.

The bottom right panel of Fig. 3 shows GB’s data in a slightly
modified version of the task. In fact, we wondered if the bimodality
shown in this observer could be attributed simply to a fault of the
tions of responses for a target around threshold as a function of the reported tilt for
0, represent errors, while filled symbols represent correctly identified tilt directions.
functions, as predicted by both models. Observer GB does not follow this pattern in
around the target.
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estimation task measurement, when observers had to report small
tilts, or to a more subtle effect like the intrinsic uncertainty (Pelli,
1985) that could be generated by the fact that the target was a very
small, isolated peripheral patch of high spatial frequency, even if it
was displayed at high contrast. Indeed, even if the target had high
contrast, observers sometimes reported not to see it clearly (or at
all). To answer this question we re-ran this condition in observer
GB with an outlining circle that cued clearly the location of the
stimulus, possibly reducing intrinsic uncertainty about its location.
The bottom right panel of Fig. 3 shows the response distribution of
observer GB under this condition, showing a return to a gaussian,
unimodal shape of the distribution. Therefore, the bimodality ob-
tained by this observer in the basic condition is coherent with
the effect of intrinsic uncertainty that was reduced by outlining
its location.
5. Measuring the crowded condition

Results for the crowded condition are shown in Fig. 4. Again,
proportions of responses for three observers are plotted as a func-
tion of the reported tilt. The bottom right panel reports the distri-
butions of GB with outlining circles around both target and
flankers; we reasoned that in the crowded condition the flankers
should reduce themselves the positional uncertainty about the tar-
get location, but this measure was performed to control for poten-
tial artifacts from the outlining circles. In this case the pattern of
distributions changes drastically compared with the Target Alone
condition. In all cases the criterion for bimodality was met, with
larger tilts preferred to smaller tilts for both errors and correct
identifications.

This pattern was very close to that obtained in the uncrowded
condition of visual search (Baldassi et al., 2006). We therefore
Fig. 4. Response distributions of the crowded condition. Each panel plots the proportions
with outlined patches). Symbols are like those of Fig. 3: empty symbols, to the left of 0, re
solid line represents simulation for the Averaging model, while the dashed line represent
for small tilts and an increase for larger tilts implying bimodality, but the tails of the e
model, possibly implying that the flankers introduced additional sources of noise.
modeled the data simulating both the Averaging model (solid
lines) and the Signed–Max model (dashed lines). The only param-
eter used was the internal noise for one element (i.e. the threshold
for the target alone), that was successful in describing the response
distributions for the target alone. The MonteCarlo simulations rule
out the strict Averaging model, since it predicts unimodal distribu-
tions independently on the presence of the flankers. The Signed–
Max model was a very good fit of the data in two out of three
observers. In the two conditions tested in observer GB, even
though the bimodality is clear (and significant, based on the boot-
strap test), the prediction of the Signed–Max model, represented
by dashed lines, underestimates the width of the empirical func-
tion. Possibly, this indicates some additional source of noise in
the computation, that is often found in set size modulations (Wil-
ken & Ma, 2004) or the use of a hybrid model, in which the max
rule is applied to regional rather than global orientation estimates
(see below).

5.1. Locating individual crowded stimuli

The data shown so far seem to support an uncertainty explana-
tion of this sort of crowding. However, we still cannot completely
rule out that this pattern was due to a version of the Averaging
model that combines outputs from independent, first stage filters
after a non-linear transformation, such as squaring (Heeger,
1992). If the output from each local element is raised to a power
greater than 1 before the averaging stage, then the element with
the strongest output will count more and more with increasing
the exponent. The response distribution generated by a similar
averaging rule will lose linearity, approximating the one predicted
by the Signed–Max rule, showing a bimodality that sharpens with
higher exponents. We then decided to test if observers would be
able to locate the target.
of responses as a function of the reported tilt for three observers (GB was tested also
present errors, while filled symbols represent correctly identified tilt directions. The
s simulation for the Signed–Max model. All observers exhibit a low rate of responses
mpirical distributions are generally larger than the predictions of the Signed–Max
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against the Averaging prediction (solid line), but less rapidly than the predictions of
a Signed–Max model (dashed line) that locates the target based on the strongest
output. Panel B shows the proportion of responses for each location when the target
tilt was correctly identified. Note that the axis goes to negative values, correspond-
ing to the central gray circle, an artifact we have introduced to increase the visibility
of the results without altering its significance (error bars are in all cases smaller
than the symbols). Polar angle reflects the selected position, relative to the tilted
flanker position, that in the plot is normalized to its North location. Flankers are
numbered in a clockwise, progressive order (F1–F7). The symbols show the mean of
four observers and its standard error. The solid line shows the guessing rate,
coincident with the predictions of the Averaging model, while the dashed line
indicates the prediction for the Signed–Max model. For correct identifications, the
position of the target was reported significantly more often (p < 0.01) than the other
locations and the locations adjacent to the target are reported more often than
those farther away (Tukey test a = 0.05).
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Fig. 5A shows the proportion of correct localization, indepen-
dent of the identification response (CW or CCW), at different iden-
tification performance levels relative to threshold (BT = below
threshold; NT = near threshold; AT = above threshold). The mean
of our four observers (standard errors are smaller than the sym-
bols) clearly show a consistent and significant pattern of improve-
ment of localization performance with increasing discriminability.
Performance departed from guessing (coinciding with the predic-
tions of the Averaging model, the solid line), but it was not as effi-
cient as predicted by an uncertainty model (dashed line) that
selects the location with the strongest output. Fig. 5B shows a polar
representation of the selected locations relative to the target when
the target tilt was correctly identified. The tilted flanker location
was normalized to be plotted at the North location, and each gray
circle is the mean of the four observers (with SEM). The solid line
shows the pattern of random localization that coincides with the
predictions of the Averaging model, while the dashed line shows
the predictions of the Signed–Max model, represented by a peak
of localization responses at the target position while the other se-
ven locations are randomly selected. When observers identified the
tilt of the two targets, they could also locate the tilted flanker sig-
nificantly more often than the other locations (ANOVA test,
p < 0.01, F = 79.3628, Tukey test 6 0.05), ruling out the Averaging
model. The only difference between the data and the predictions
of the Signed–Max model was in the ‘nearby flanker’ errors shown
in the data.

It thus appears that observers are not limited to a global average
orientation, and are able to locate tilted targets in crowded arrays
with some degree of accuracy. These localization results diverge
from those obtained by Parkes et al. (2001), who found that
observers were unable to identify the configuration of three tilted
elements in a crowded array. One possible reason for our divergent
results is our size of target angles. Parkes et al. did not report the
size of theirs, they only stated that performance ‘‘did not improve
with target tilt.” When our targets were Below Threshold, our
observers’ localizations were no better than chance. Perhaps Parkes
et al’s target tilts were similarly small.
6. Discussions and conclusions

In this study we investigated the mechanism underlying crowd-
ing of orientation signals, previously explained by compulsory
averaging before awareness. The study by Parkes et al. (2001), to
which our work is directly connected, reported a linear decrease
of thresholds with increasing number of targets from an array of
nine oriented signals. In our study, we replicated the effect but in-
creased the scope of the results by concurrently measuring the dis-
tributions of perceived magnitude. The distributions showed
bimodality of perceived tilts, which is a signature of non-linear
combination of information from the elements composing a
crowded display.

For further evidence of conscious access to local orientation sig-
nals, we tested the observers’ locating ability, that was well better
than chance as predicted by the Averaging model. Whereas loca-
tion would be impossible without some conscious access, perfor-
mance fell below the Max rule predictions (see Fig. 5). Perhaps
observers used some hybrid strategy, averaging orientation esti-
mates in different regions of the stimulus array, and then applying
a max rule to those averages. Another possibility is that, when
identifying target tilt, observers use some non-linear combination
of tilt estimates (e.g. the max rule); but their localization responses
are based on texture borders. Targets form a texture border with
each adjacent distractor. On trials in which only one of these bor-
ders can be detected, observers may select the adjacent distractor,
rather than the target’s true location (Solomon & Morgan, 2001).
Mislocalization to adjacent elements can be associated to the illu-
sory conjunction effect, the condition in which the observer com-
bines different characteristics of nearby elements susceptible to
spatial crowding (Treisman & Schmidt, 1982), or to the similar
phenomenon of feature inheritance (Herzog & Koch, 2001).

To conclude, based on the results of this study, we propose that
uncertainty contributes to the sensitivity impairment in the pres-
ence of flankers to a peripheral target, but it is not the sole cause.
In our crowding task, what may be happening is that the system
cannot avoid basing its decision on a channel representing a
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flanker, or group of flankers, if it produces a response stronger than
that representing the target. What remains to be determined are (i)
the size of the regions in which orientation estimates are averaged,
(ii) the number of these regions that influence observer’s responses
and (iii) the exact form of the decision rule. In any case, we have
enough evidence to suggest that identification of a crowded tar-
get’s tilt is not limited to an array’s global average orientation.
Some form of uncertainty plays a role.
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