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SUMMARY

Perception is a proactive, ‘‘predictive’’ process, in
which the brain relies, at least in part, on accumu-
lated experience to make best guesses about the
world to test against sensory data, updating the
guesses as new experience is acquired. Using novel
behavioral methods, the present study demonstrates
the role of alpha rhythms in communicating past
perceptual experience. Participants were required
to discriminate the ear of origin of brief sinusoidal
tones that were presented monaurally at random
times within a burst of uncorrelated dichotic white
noise masks. Performance was not constant but var-
ied with delay after noise onset in an oscillatory
manner at about 9 Hz (alpha rhythm). Importantly, os-
cillations occurred only for trials preceded by a target
tone to the same ear, either on the previous trial or
two trials back. These results suggest that communi-
cation of perceptual history generates neural oscilla-
tions within specific perceptual circuits, strongly
implicating behavioral oscillations in predictive
perception and with formation of working memory.

INTRODUCTION

It has long been known that perception depends heavily on ex-

pectations and perceptual experience. Helmholtz [1] introduced

the concept of ‘‘unconscious inference,’’ suggesting that

perception is at least partly ‘‘inferential’’ or ‘‘generative,’’ and

Gregory [2] described perception as a series of hypotheses to

be verified against sensory data, usingmany compelling illusions

to support this notion. In this view, perception is a proactive,

‘‘predictive’’ process, where the brain uses accumulated experi-

ence to make best guesses about the world to test against sen-

sory data, updating the guesses as new experiences are

acquired.

Recent studies using ‘‘serial dependence’’ demonstrate

clearly the action of predictive perception and provide a means

of quantitative study: under many conditions, the appearance

of images in a sequence depends strongly on the stimulus pre-

sented just prior to the current one. Judgments of orientation
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[3], numerosity [4], motion [5], facial identity or gender [6, 7],

beauty, and even perceived body size [8] are strongly biased to-

ward the previous image. Serial biases are also observed in audi-

tion for pitch discrimination [9, 10]. Sequential effects can last up

to minutes [11], showing that perception does not rely solely on

instantaneous stimulation but also on predictions, or ‘‘priors,’’

conditioned by events over a long time course.

The neuronal mechanisms underlying serial dependence are

largely unknown. It is assumed that the predictions are gener-

ated at mid–high levels of analysis and fed back to early sensory

areas, whose activity in turn feeds forward to add to the accumu-

lated knowledge and shape future predictions [12–16]. Little is

known, however, about how this information is propagated, or

the nature of the underlying neural mechanisms. One possibility

is that recursive propagation and updating of stored prior expe-

rience are related to low-frequency neural oscillations [17–19].

We have recently shown, in both audition [20] and vision [21],

that ‘‘sensitivity’’ (accuracy) and ‘‘criterion’’ (response bias) are

not constant but oscillate rhythmically over time at different fre-

quencies: theta for sensitivity and alpha for criterion, suggesting

separate mechanisms [20, 21]. The oscillations in audition were

revealed using monaural stimuli, which may explain the

discrepant results of previous studies [22–25] that used binaural

stimuli, potentially generating oscillations out of phase in each

ear (discussed in [20]). The alpha oscillations in criteria are

consistent with an increasing number of electroencephalog-

raphy (EEG) findings showing an association between criterion

shifts, memory, and modulations of alpha power and phase

[18, 26–30].

Oscillations in bias could plausibly reflect the action of predic-

tive mechanisms, possibly via reverberation of recursive error

propagation within a generative framework. Storage of prior in-

formation necessarily implicates memory processes. VanRullen

and Macdonald [31] have proposed an oscillatory mechanism

by which past perceptual visual history may be stored in short-

term memory as a reverberatory ‘‘perceptual echo.’’ The rever-

beration should affect the predictive mechanism that biases

perceptual decisions, giving rise to sequential effects. Given

the oscillatory nature of the reverberation, behavioral oscillations

in criteria, observed in different domains and tasks [20, 21, 32],

may be modulated or even gated by the history of the previous

presented stimuli. It is still debated as to whether a form of

perceptual echo may exist in audition [33], but we test here for

this possibility by measuring behavioral oscillations in criterion
e Authors. Published by Elsevier Ltd.
commons.org/licenses/by/4.0/).
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Figure 1. Experimental Design and Results

of the Serial-Dependence Analysis

(A) Schematics of a trial. On each trial, uncorrelated

dichotic white noise was presented simultaneously

for 2 s.Apure toneof1 kHzand10-msdurationwas

delivered with equal probability to the left or right

ear, at anSOA randomlyselected froman interval of

0.2 s to 1.2 s post noise onset. The inter-trial interval

varied randomly between 1.2 s and 2.2 s.

(B) Application of signal detection theory (SDT).

We calculated sensitivity (d0) and decision crite-

rion (c) using the hits (H) and false alarms (FA)

from the left- and right-target conditions,

respectively (M, misses; CR, correct rejections).

The calculations follow Equations 1 and 2.

(C) Results of the overall serial-dependence anal-

ysis. Group mean response bias (as measured by

the decision criterion c; Equation 2) contingent on

the ear of origin of the preceding 1–5 stimuli. The

difference between the contingent left and right

(blue and red bars, respectively) are significant for

the 2-, 3-, and 4-back stimuli (Bonferroni cor-

rected). Error bars indicate ± 1 SEM.

(D) Group mean response bias contingent on the

response 1–5 trials back. The difference between

the contingent left and right (blue and red bars,

respectively) is significant for 2-back and

marginally significant for 1-back (FDR corrected).

d0 (Figure S1) showed no significant sequential

effects for either 1- or 2-back trials after Bonfer-

roni correction. Error bars indiciate ± SEM.
in a dichotic auditory discrimination task, analyzing the series

based on the congruency of previous auditory stimuli. The re-

sults demonstrate that perceptual oscillations occur only for

stimuli that are congruent with previous stimuli, consistent with

an auditory perceptual echo within sensory channels.

RESULTS

Average Effects of Stimulus History
Participants were required to identify in two-alternative forced

choice (2AFC) the ear of origin of a brief monaural near-threshold

tone embedded within a 2-s burst of dichotic white noise (Fig-

ure 1A). Given the many studies that have shown how stimulus

history can bias responses [3, 4, 6, 34–36], we first looked for

average effects in response bias, as measured by criterion

(Equation 2; see also Figure 1B). Figure 1C reports the effects

of previous trials as a function of relative position in the

sequence. Although there was no significant 1-back effect (Bon-

ferroni-corrected p = 3.69, log Bayes factor [logBF] = �0.55),

there was a strong and highly significant 2-back effect of

response biases toward the previously presented stimulus

(p = 0.0002, logBF = 2.91). The effects remained significant for

stimuli three and four trials back (p = 0.03, logBF = 0.93 and

p = 0.04, logBF = 0.84, respectively), but were not significant

five trials back (p = 4.76, logBF = �0.57).

Because it appeared strange to have a 2-back but not a

1-back effect on criterion, we further analyzed the data for a de-

pendency of the previous response, to see whether this would

help to explain the paradoxical result. Figure 1D shows a nega-

tive influence of one trial back, only marginally significant after

Bonferroni correction (p = 0.1, logBF = 0.49). Although not
statistically robust, this repulsive effect could result from the

known effect of ‘‘response switching’’ [37], which could explain

the lack of stimulus-based serial dependence in 1-back trials.

Response dependence on two trials back (which should be

enhanced by double-response switching) showed the same

assimilative aftereffect found for the stimulus-based analysis

(p = 0.0001, Bonferroni corrected, logBF = 3.16). Trials further

in the past showed no significant effects (all p values > 0.05).

We also looked for serial-dependence effects in sensitivity

(d0; Equation 1; see also Figure 1B). As may be expected (given

that the order of trials was completely random), stimulus history

had no significant effect on observer sensitivity (Bonferroni-

corrected p = 0.06 with logBF = 0.66 and p = 2.36 with

logBF = �0.47, respectively, for 1- and 2-back trials; see

Figure S1).

Oscillation of Response Bias, but Not Sensitivity
Figures 2A and 2B show the variation over time in sensitivity (Fig-

ure 2A) and criterion (Figure 2B), computed by binning aggregate

data as a function of target stimulus-onset asynchrony (SOA)

from noise onset. It is evident that criterion oscillates strongly

and regularly and can be well fit by a pure sinusoidal function

with a frequency of 9.4 Hz, shown by the gray curve in Figure 2B.

In contrast, sensitivity does not show a rhythmic periodicity and

no sinusoidal function fit the temporal series well (Figure 2C).

However, the reader is referred to the post hoc analysis in Fig-

ure 5, which shows that when considering the ears separately

(not possible for the analysis of sensitivity in this study), accuracy

does oscillate, out of phase in each ear.

To evaluate the goodness of fit of each sinusoidal function, we

compared the explained variance (R2) of the real data for every
Current Biology 29, 4208–4217, December 16, 2019 4209



Figure 2. Results of the Curve-Fitting

Analysis

(A) The yellow line shows the time course of the

detrended d0 based on the aggregate data. The

data are smoothed for display purposes, with all

statistical analyses run on non-smoothed data.

The shaded yellow area enveloping the line rep-

resents bootstrapped ±1 SEM. The gray curve

depicts a 9.4-Hz oscillation fitted to the sensitivity

data.

(B) Same as (A) for criterion (green line).

(C) The goodness of fit (R2) for all sinusoids from 4

to 12 Hz, in steps of 0.1 Hz. The dotted black line

represents the 95th percentiles of the permutation

distribution depicted in (E). R2 for sensitivity (yel-

low line) never reaches significance, whereas that

for criterion does for the range of 9.1–9.6 Hz,

highest at 9.4 Hz.

(D and E) Illustration of the permutation method:

we shuffled the aggregate data 2,000 times, fitted

the shuffled data with the best frequency over the

4- to 12-Hz range, and calculated the distributions

of R2 for sensitivity (D) and criterion (E) distribu-

tions. The red lines show the R2 of the fit to the

original data at 9.4 Hz. The p value of the sign test

is given by the proportion of permuted R2 greater

than the original R2 (red lines).

An overview of the statistical results is provided in

Table S1.
frequency from 4 to 12 Hz in steps of 0.1 Hz with the R2 of the

best fit of the surrogate shuffled data at any frequency within

the range, to correct for multiple comparisons (Figures 2C–2E;

STAR Methods). For sensitivity (orange line), no frequency pro-

duced a fit near the 95% confidence threshold (dotted line), cor-

rected for multiple comparisons across all tested frequencies.

However, the criterion data (green line) showed significant mod-

ulations between 9.2 and 9.6 Hz, with a strong peak at 9.4 Hz

(R2 = 0.15). The phase and amplitude of the 9.4-Hz oscillation

at trial onset relative to the noise burst onset were 179� ± 18�

SEM and 0.039 ± 0.011 SEM (by bootstrap), respectively. For

sensitivity (left), the explained variance is clearly not significant,

whereas for criterion (right) the best fit is higher than 99.1% of

the surrogate best fits, giving a sign-test significance (on the

goodness of fit) of p = 0.006 (corrected across all tested fre-

quencies). In addition, we evaluated the amplitude and phase

of the aggregate fit using a two-dimensional (2D) bootstrap

test (as in Figure 7 and similar to the 2D sign test in our previous

study [20]). The results, p = 0.01 (corrected with false discovery

rate [FDR] = 0.05 [38]), corroborate the sign test of the goodness

of fit. Tables S1 and S2 provide an overview of the statistical re-

sults in the aggregate and individual data analyses.

The results shown in Figure 2 were based on an aggregate

data analysis, pooling all trials across subjects and fitting sinu-

soids over the entire duration. In a complementary analysis, we

evaluated the consistency across subjects using a general linear

model (GLM) approach on single trials that is more resilient to

sparse sampling than curve fitting (see also [32, 39, 40]). Specif-

ically, we applied the linear regression in Equation 6 (STAR

Methods) to the individual ‘‘accuracy’’ (correct or incorrect)

and ‘‘response bias’’ (left or right), which are approximations of

sensitivity and criterion, respectively. The results corroborate

those of the aggregate data analysis and show that no single
4210 Current Biology 29, 4208–4217, December 16, 2019
subject is driving the effect. Figure 3A plots the amplitude spec-

trum (amplitude of the vectorial average across subjects, like

those in Figure 3C) for oscillations in accuracy, and Figure 3B

that for response bias. Response bias (Figure 3B) shows a strong

peak around 9.4 Hz, reinforcing the curve-fitting results for crite-

rion in Figure 2C. A similar permutation procedure as for the

aggregate analysis yielded the corrected p values plotted in Fig-

ures 3D and 3E. For response bias, the oscillation at 9.4 Hz is sig-

nificant, p = 0.024 (Figure 3F). Although there are several peaks in

the amplitude spectrum for accuracy (Figure 3A), none was sig-

nificant after multiple-comparison correction (Figure 3D).

Figure 3C shows the individual vectors for response bias at

9.4 Hz, with the vector angle showing the phases of individual

participants at noise onset. The vectors are tightly clustered

around a phase angle of 172� ± 8� SEM and amplitude of

0.023 ± 0.009, similar to the phase angle and amplitude we ob-

tained from the curve-fitting analysis with the aggregate data. In

addition, we performed a t test on the average of the individual

vectors at 9.4 Hz for the criterion data, evaluating the 2D disper-

sion of the individual subjects. The result was significant, with

t(13) = 2.85 and p = 0.014. Using Equation 8, we obtained a logBF

of 0.683, which by convention is considered substantial evi-

dence in favor of the model.

Oscillations in Response Bias Are Driven by Stimulus
History
Having established the existence of rhythmic fluctuations in cri-

terion in both the aggregate and individual data, we investigated

the dependence of the oscillations on the previous stimulus, us-

ing the same two analysis techniques. We separated the trials

into two groups, based on whether the previous stimulus had

been presented to the same ear (congruent, lL or rR, where L

and R denote the ear of origin of the current stimulus and l and



Figure 3. Results of the Linear Regression

Analysis Based on Individual Data without

Binning

(A) The yellow line represents the amplitude

spectrum for accuracy computed from the

vectorial average of the GLM estimates of b1 and

b2 across participants. The shaded area around

the line indicates ±1 SEM.

(B) Amplitude spectrum of response bias based

on the same analyses as for accuracy.

(C) Individual 2D vectors (b1, b2) at 9.4 Hz for

response bias. The length and direction of the line

indicate the amplitude and phase (relative to time

of noise onset).

(D) The results of the 2D permutation test for

accuracy for the frequency range of interest,

4–12 Hz, corrected for multiple comparisons.

(E) Corrected p values for response bias obtained

by the same 2D permutation as for accuracy.

(F) Illustration of the 2D permutation test by which

the p values in (D) and (E) were computed. The

sign test is based on the proportion of the largest

permutation vectors (irrespective of frequency)

whose amplitudes exceed the group mean

(outside the red circle passing through the group

mean, shown by the red dot).

The statistical results are also summarized in

Table S2.
r that of the previous stimulus) or different ear (incongruent, lR

or rL), and analyzed for criterion. Figure 4 shows the results of

the curve-fitting analysis of the aggregate data. Congruent trials

(Figure 4A, dark green line) displayed a good fit at 9.4 Hz (thick

gray line; R2 = 0.15, p = 0.015), with an amplitude of 0.054 ±

0.015 SEM (higher than when all trials were considered). How-

ever, the goodness of fit for incongruent trials did not approach

significance at any frequency (Figure 4B, light green line; R2 =

0.04 and p = 0.9 at 9.4 Hz). Figure 4C shows that only for

congruent trials did the goodness of fit survive themultiple-com-

parison correction, and only for frequencies between 9.1 and

9.6 Hz (p < 0.05, corrected across all tested frequencies).

Furthermore, the 2D bootstrap test indicated that the phase

(180� ± 19� SEM) and amplitude of this 9.4-Hz oscillation for

congruent trials were significant, p = 0.008 (FDR corrected).

For incongruent trials, phase and amplitude at 9.4 Hz, 179� ±

26� and 0.029 ± 0.015, respectively, were not significant,

p = 0.2, consistent with the sign test on the goodness of fit.

To probe further the relative goodness of fit of the alpha oscil-

lations for the congruent and incongruent trials, we used the

Akaike information criterion (AIC [41, 42]) to calculate the relative

likelihood of the fit at 9.4 Hz compared with other peaks, sepa-

rately for the two datasets. For the congruent data, the 9.4-Hz

fit was 10.7 times more likely to capture the true model of the

data than the next largest peak, at 10.9 Hz. This is strong evi-

dence for a principal modulation at 9.4 Hz describing the data.

For the incongruent trials, however, the most probable modula-

tion (at 8.4 Hz) was only 1.4 timesmore likely than that at the next

peak, at 9.4 Hz. The absence of a clear single modulation is

consistent with the idea that the incongruent trials are dominated

by random noise.

Again, we examined the individual subject data using the

regression analysis, separately for congruent and incongruent
trials. As for the aggregate data, the congruent trials (dark green

line) yielded a large peak around 9.4 Hz with A = 0.03 ± 0.011

(Figure 5A). At this frequency, the amplitude for the incongruent

trials is much reduced, with A = 0.019 ± 0.012 (Figure 5B). In-

spection of the vector plots shows a tight cluster around a

mean phase angle (at noise onset) of 164� ± 8� SEM for

congruent trials (Figure 5C) but a greater dispersion for incon-

gruent trials (mean phase 177� ± 10� SEM; Figure 5D), although

still not uniformly distributed over 360�. The results of the 2D per-

mutation test plotted in Figure 5E show that the only frequencies

to survive the strict multiple-comparison correction were around

9.4 Hz (dark green line, congruent trials) with p = 0.046. In

contrast, incongruent trials showed no significant frequencies

(light green line; p = 0.8 at 9.4 Hz). Corroborating the 2D permu-

tation results, the t test on the average of the individual vectors

at 9.4 Hz was clearly significant for the congruent trials

(t = 2.85, p = 0.014, logBF = 1.00). By convention, logBF R 1

is considered strong evidence in favor of the model. The

incongruent data did not reach significance (t = 1.53, p = 0.15,

logBF = �0.029). However, the logBF near 0 does not allow us

to claim with certainty that there were no oscillations at this

frequency. Indeed, later analyses (Figure 6) show that there are

oscillations for a subset of trials, in agreement also with the

non-uniform distribution of the individual phases (Figure 5D).

The analysis of the sensitivity data revealed no significant os-

cillations at any frequency, either for congruent or incongruent

data (Figure S2). Because our previous work suggested that

sensitivity may oscillate out of phase in the two ears [20], we per-

formed a post hoc regression analysis of the accuracy of

congruent trials separately for ear of origin. Figures 5F and 5G

show individual vectors for both ears for the congruent trials

(rR and lL analyzed separately) at 9.4 Hz: left targets led to a

mean direction of 190� ± 10� and right targets 301� ± 9�. The
Current Biology 29, 4208–4217, December 16, 2019 4211



Figure 4. Results of the 1-Back Analysis for Criterionwith Aggregate

Data

Here (and elsewhere) lowercase letters (r or l) refer to the ear of the previous

trial, and uppercase (R or L) to the current trial.

(A) The dark green line shows the binned congruent trials (data smoothed for

display purposes only). The error bars indicate ±1 SEM obtained by boot-

strapping the aggregate data 2,000 times. The thick gray line represents the

9.4-Hz oscillation, which we fitted to the criterion data.

(B) The incongruent trials submitted to the same binning, curve-fitting, and

bootstrapping procedure as congruent trials.

(C) The goodness of fit for congruent (dark green line) and incongruent trials

(light green line) at all tested frequencies from 4 to 12 Hz in 0.1-Hz steps. The

black dotted line indicates the 95th percentile of the distribution of maximal R2

obtained by permuting the individual trials.

Table S1 gives an overview of the statistical results. Figure S2 shows the re-

sults of the 1-back analysis for sensitivity.
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Rayleigh test of uniformity [43] indicated that the phase coher-

ence across participants in both the left, z = 6.24, p = 0.001,

and right ear was significant, z = 4.47, p = 0.009 (see also Table

S3). The mean difference between rR and lL was 111�, broadly
consistent with an antiphase relationship. Using theWatson-Wil-

liams test (circular analog to a two-sample t test [43]), we further

confirmed that the group phase distributions for left- and right-

ear accuracy in the congruent trials were significantly different

(p < 0.05, Bonferroni corrected) at 9.4 Hz. Thus, the lack of oscil-

lations in the binaural dataset (Figures 2, 3, and S2) may reflect

cancellation of out-of-phase left- and right-ear oscillations,

consistent with our previous research [20].

An obvious question is whether the oscillations in criteria

depend on the current stimulus being the same as the previous

stimulus or the previous response. This is difficult to test, as re-

sponses were 75% correct, and therefore strongly correlated

with stimuli. However, we ran the curve-fitting analysis for cur-

rent stimuli contingent on the previous response. In this analysis,

the main peak remained at 9.4 Hz but was not significant (Fig-

ure S3). This suggests—but does not prove—that the trials

needed to be coherent with previous stimuli rather than re-

sponses. No other analyses, including coherent and incoherent

error trials (where responses are different from stimuli), yielded

significant results (Figure S4). However, these error analyses

necessarily result in greatly reduced numbers of trials (about

25%), making significance difficult to reach.

Duration of the Serial Effect on Bias
Because the serial-dependence analysis showed strong 2-back

effects (Figure 2B), we tested whether measurable oscillations

near 9.4 Hz were contingent on stimuli presented two trials

back. We examined further the 1-back incongruent data which,

although they showed no significant oscillations (Figure 5B),

the Bayes factor analysis did not allow us to exclude the possi-

bility that some oscillations exist. We divided trials with incon-

gruent stimuli on the previous trial (i.e., the light green curves in

Figures 4B and 5B) into two groups, where stimuli presented

two trials back were either congruent (lrL or rlR, where upper-

case denotes current trial) or incongruent (rrL or llL). Because

we expected oscillations to be weak and near the frequency

found for 1-back trials, we confined our analysis window to a

limited region of 9.1–9.6 Hz (for both the original and shuffled

data). Figure 6A shows a significant oscillation in the 2-back

congruent data, best fitted by a sinusoid of �9.2 Hz (R2 = 0.08,

p = 0.018). The amplitude of this oscillation (0.073) was higher

than when all incongruent 1-back trials were considered

(0.029; see Table S1). There was nomodulation at this frequency

in the 2-back incongruent data (R2 = 0.01, p = 0.7; Figure 6B).

Similarly, the 2D bootstrap test confirmed that the amplitude

and phase of the 9.2-Hz oscillation were significant for congruent

trials (A = 0.07 ± 0.024, f = 209� ± 20�, p = 0.002), but not for

incongruent trials (A = 0.02 ± 0.018, f = 348� ± 33�, p = 0.18).

We examined the individual group coherence at 9.2 Hz with

the same regression analysis as before for 2-back congruent

(Figure 6E) and 2-back incongruent (Figure 6F) trials. The ampli-

tude of the congruent trials is equal to 0.018 and the phases clus-

ter around 190� ± 10�, similar to that of the 1-back congruent

data (Figure 5C) and the result obtained from the aggregate

data. For the incongruent trials, the amplitude is 0.019 ± 0.018



Figure 5. Results of the 1-Back Analysis for

Response Bias with Individual Subject Data

(A) Amplitude spectrum for the congruent trials

computed from the individual estimates of b1 and

b2 averaged across participants. The shaded area

around the dark green line indicates ±1 SEM.

(B) By the same method, we computed the

amplitude spectrum with incongruent trials.

(C) Individual phase and amplitude vectors (at

noise onset) based on congruent trials at 9.4 Hz.

(D) Individual vectors for incongruent trials at

9.4 Hz.

(E) The 2D significance test (see Figure 3F) was

done for every frequency from 4 to 12 Hz in 0.1-Hz

steps. The dark and light green lines depict

the corrected p values for congruent and incon-

gruent trials, respectively. The black dotted line

indicates a = 0.05 (corrected for multiple com-

parisons).

(F) As a post hoc test, we split the congruent trials

further into trials that contained a left or right

target and tested their phase relationship using

circular statistics. At 9.4 Hz, observers showed

very strong phase coherence for both ears. Here,

we plot the individual phase and amplitude vectors for congruent trials containing a target in the left ear. The thick red line indicates the direction of the mean

vector (with unit length) which is close to 180�.
(G) The individual phase and amplitude vectors at 9.4 Hz for congruent trials containing a right target. The direction of the mean vector is �301�. We also

conducted two 1-back analyses contingent on the previous response; the results are shown in Figures S3 and S4.

An overview of the statistical results is provided in Tables S2 and S3.
and the mean phase is 295� ± 9�, which bears no relation to the

mean phase of either the 1-back congruent or incongruent con-

dition (Figures 5C and 5D). Figures 6G and 6H show the results of

the 2D permutation test at 9.2 Hz, which are consistent with the

results of the aggregate data analysis. Very few points (dark cyan

dots in Figure 6G) from the permutation distribution (p = 0.007)

exceed the group mean vector (thick red dot) in the congruent

condition, compared with the incongruent condition, p = 0.37

(Figure 6H). The 2D t test on the individual vectors at 9.2 Hz (Fig-

ure 6E) also indicated that the oscillation in the congruent trials

was significant, t(13) = 2.13, p = 0.05, logBF = 0.4, but not

the oscillation in the incongruent trials, t(13) = 1.07, p = 0.3,

logBF = �0.29. Taken together, the results suggest that the

9.2-Hz oscillation lasts at least two trials.

To be certain that there was no significant oscillation in the

incongruent trials, we compared further the 2-back congruent

and incongruent trials, with both a bootstrap analysis of the

aggregate data (similar to the onewe used in [20]) and a standard

t test on the individual vectors. Because stimuli presented either

one or two trials back can both generate oscillations, we divided

the data into those totally congruent over three trials (llL and rrR)

and totally incongruent (rrL and llR). As in the previous analysis

(Figure 6), each set comprises a quarter of the total trials.

Figure 7A shows the bootstrap results (2,000 independent

random draws, with replacement, before binning) of the aggre-

gate data at 9.2 Hz for congruent (red dots) and incongruent

(cyan dots) trials. The average aggregate amplitudes for

congruent trials (black asterisks), A = 0.073 ± 0.024 SEM (see

also Figure S5), are much greater than for incongruent trials,

A = 0.021 ± 0.018 SEM (see also Figure 6B). The 95%confidence

regions (red circle) for the congruent condition does not

even approach zero, whereas the incongruent samples (the

cyan circle) embrace fully the origin. For congruent trials, only
three points cross the semi-space opposite the mean vector,

leading to a significance of p = 0.003. On the other hand, 18%

of the incongruent bootstrapped data lie on the semi-space

opposite the average vector, consistent with the oscillation being

random.

The vector plot of individual participants in Figure 7B suggests

a similar story. The average amplitude across subjects is lower

for incongruent, A = 0.019 ± 0.018 SEM, than congruent trials,

A = 0.041 ± 0.015 SEM. Furthermore, whereas the mean phase

across subjects in the congruent condition, f = 208� ± 10�, is
similar to that from the aggregate data, 209� ± 10� SEM (by boot-

strap), the mean phase across subjects in the incongruent con-

dition, f = 295� ± 9�, is different from that from the aggregate

data, 348� ± 33� SEM (by bootstrap). This is consistent with

the idea that the 9.2-Hz bias fluctuation in the incongruent trials

is principally noise, given that applying two different methods

yields two different results. Finally, we confirmed with the 2D

t test that the oscillation in the fully congruent trials was signifi-

cantly different from zero (t = 2.77, p = 0.016, logBF = 0.93),

whereas for the incongruent trials, the difference was not signif-

icant (t = 1.07, p = 0.3, logBF = �0.29). The negative log Bayes

factor is consistent with there being no modulation other than

noise.

DISCUSSION

To generate and maintain a stable and coherent percept from

noisy and ambiguous signals, perceptual systems take advan-

tage of past information to anticipate forthcoming sensory input.

Although there is a good deal of behavioral evidence in favor of

this predictive account of perception, little is known about the

underlying neural mechanisms. The current study suggests

that predictive perception is linked to rhythmic alpha-band
Current Biology 29, 4208–4217, December 16, 2019 4213



Figure 6. Results of the 2-Back Analysis for

Criterion with Aggregate and Individual

Data of Trials Incongruent with the Previous

Trial and Either Congruent or Incongruent

with Stimuli 2 Trials Back

(A) The dark cyan line shows the binned congruent

trials (error bars indicate ±1 SEM), with the dark

gray thick line showing the best fitting sinusoid

over the range of 9.1 to 9.6 Hz.

(B) The binned incongruent data fitted with the

same frequency, 9.2 Hz.

(C) The R2 obtained at 9.2 Hz (thick red line) was

compared against the goodness of fit of the sur-

rogate shuffled data (dark cyan histogram), bin-

ned, and fitted as the original data.

(D) The same permutation test for the incongruent

condition was not significant.

(E) The individual vectors in the congruent condi-

tion at 9.2 Hz, with subjects color coded as in

Figures 3 and 5. Their phases cluster around a

similar phase as in the congruent 1-back trial

(Figure 5C).

(F) The phases of incongruent trials at 9.2 Hz are not consistent across participants (Figures 5C and 5D).

(G) The result of the 2D permutation test on the individual subjects’ trials at 9.2 Hz for the congruent condition is significant, consistent with the result of the

aggregate data analysis shown in (C).

(H) The 2D permutation result for the incongruent condition is not significant, also consistent with the aggregate result in (D).

The statistical results are also listed in Tables S1 and S2.
oscillations. Performance in identifying the ear of origin (and

consequently the location in space) of a weak tone was rhythmi-

cally biased by previous stimuli presented one or even two trials

before the current stimulus. Although the immediately past trials

had no average serial effect (discussed below), we observed a

strong 9.4-Hz rhythmic fluctuation in bias (or criterion), which

was critically dependent on stimulus history: perceptual oscilla-

tions occurred only when a stimulus had previously been pre-

sented to the same ear as the current one, either one or two trials

back. The strong dependence of oscillations on stimulus congru-

ency suggests that they play a fundamental role in the propaga-

tion of predictive information, possibly related to the ‘‘perceptual

echo’’ suggested by VanRullen and Macdonald [31].

Although we define stimulus congruency in terms of ear of

origin, it is important to note that stimuli confined to one ear

are perceived as originating from that side of space. Therefore,

the interaction between consecutive stimuli may be mediated

by the neuronal circuitry defining acoustic space, rather than

within the monaural circuitry (future research may use external

speakers rather than headphones). Oscillation in the representa-

tion of space mechanisms would be consistent with several

studies in vision reporting theta-band behavioral oscillations be-

tween spatial locations [44] and between objects at different

spatial positions [45]. Interestingly, all these studies showed

that positions in left and right hemispace induce oscillations in

performance that are out of phase with each other. Similarly,

Lozano-Soldevilla and VanRullen [46] report opposite EEG

phases in the two hemispheres of 10-Hz reverberations in

response to visual stimulation (perceptual echoes). However, a

number of studies have failed to observe similar echo phenom-

ena in audition [24, 33]. The contradictory findings between

vision and audition may be due to the general difficulty in

measuring alpha oscillations in audition using non-invasive

EEG, whereas recent intracranial recordings point unequivocally
4214 Current Biology 29, 4208–4217, December 16, 2019
to the existence of auditory alphawith similar properties to that in

vision [47]. Furthermore, most auditory studies use diotic stimu-

lation contributing to the conflicting results [22, 24, 33, 48].

Considering the antiphase relationship between the left- and

right-ear oscillations in performance (proportion correct, or

sensitivity) observed here and in our previous study [20], these

may lead to a cancellation of oscillatory effects reported

previously.

The major result of this study is that oscillations in bias are

dependent on stimulus congruency. ‘‘Serial dependence,’’ the

tendency of judgments of many perceptual attributes to be

biased toward previously presented stimuli [3, 4], is an important

signature of predictive perception. Under the assumption that

the world tends to remain stable, the previous stimulus acts as

a Bayesian prior, optimizing performance when appropriately

combined with the current stimulus [34]. We presume a similar

process occurs here. At the onset of each trial (initiated by a

binaural noise burst), observers begin to seek the ear of origin

(or spatial position) of the target tone within the noise, consid-

ering both the sensory evidence of the new stimulus and past

perceptual history. If the stimulus had not been presented to a

particular ear on the previous two trials, there will be no prior

within that circuitry, so only the current stimulus is to be consid-

ered. On the other hand, if a stimulus had previously been pre-

sented to that ear, it should influence the response to stimuli to

that ear.

Crucially, our data show that the combination of the sensory

signal with the congruent prior leads to perceptual oscillations

in the alpha band. Several possible mechanisms may generate

the oscillatory behavior, but two are most consistent with the

current literature. The memory trace itself may oscillate at alpha

frequencies, as has been recently shown by Huang et al. [30] for

visual memory. Alternatively, the start of each trial may generate

a loop of reverberating signals between the top-down memory



Figure 7. Results of the Aggregate and In-

dividual Subject Data Analyses for Totally

Congruent (red, llL and rrR) and Totally

Incongruent Trials (cyan, rrL and llR) at

9.2 Hz

(A) Bootstraps of the aggregate data obtained by

2,000 random draws, with replacement and the

binning and fit procedure as in Figure 2. The red

and cyan circles indicate the 95% confidence

regions. The thick black asterisks show the vec-

tors of the original data. The p values reflect the

proportion of bootstrap samples that belong to

the semi-plane opposite the original vectors. This

is defined by a line (not shown; but see [20])

passing through the origin and orthogonal to the

phase angles of the original data.

(B) The red and cyan dots represent the individual

vectors and the black asterisks indicate their

vector averages at 9.2 Hz for congruent and

incongruent trials, respectively. As in (A), the red

and cyan circles indicate the 95% confidence

regions. The p values were computed using a 2D

t test. The curve fit, amplitude spectrum, and in-

dividual phases for the totally congruent condition

are shown in Figure S5.

Tables S1 and S2 provide an overview of the

statistical results.
signals and the bottom-up sensory signals, with the delay of the

reverberation generating an excitatory/inhibitory modulation of

the sensory response. With either explanation, the oscillations

should be synchronized to the onset of each trial, signaled by

the onset of binaural noise. Because each ear conveys a different

signal, the oscillations should be out of phase.

It may seem counterintuitive that oscillations in criterion

should be confined to the ear that had received the prior signal.

Indeed, this fact constrains the interpretations of the data. If the

oscillations occurred at the decision level, we would expect both

ears to be affected, as the criteria oscillated between one ear and

the other. That the oscillations are confined to the ear where the

previous stimuli were presented suggests that the interaction is

not at the decision level but within the sensory circuits them-

selves (either the monaural circuitry or that defining spatial loca-

tion). This is in line with evidence that serial dependence works

on perceptual processes, rather than at decision or response

stages [35] (although there is some controversy on this point

[49]). It is also consistent with the literature on working memory

showing that the regions of the brain involved in sensory pro-

cessing of a given perceptual attribute aremodulated byworking

memory specific for that attribute (for a review, see Pasternak

and Greenlee [50]). In match-to-sample tasks, the interactions

between working memory and stimuli are highly sensory specific

[50]. In particular, Gottlieb et al. [51] have reported context-

dependent potentiation of neural activity in the monkey auditory

cortex. In a match-to-sample auditory task, the neural response

to a specific tonewas enhanced after presentation of a sample of

matched frequency. They suggest that the sample changes the

synaptic neural efficacy transiently, enhancing the response to

the test. A similar mechanism could be at work in our study.

The previous tones alter the synaptic efficiency on specific

circuits, so a target to the same ear (space) is amplified

whereas targets to the other ear are unaffected. As discussed
above, the modulation is rhythmic, pointing to reverberating

mechanisms.

If the behavioral oscillations result from rhythmical variation of

neuronal sensitivity (rather than in decision boundary), why

should they affect criterion rather than sensitivity? First, because

the target ear was chosen randomly on each trial, the previous

trial was uninformative about the ear of origin of the signal, and

could therefore not on average affect sensitivity, only bias or cri-

terion. Second, both this and our previous [20] study suggest

that the oscillations may have an opposite starting phase in

each ear. Because d0 can be calculated only after a combination

of hits and false alarms of both ears, the out-of-phase modula-

tions should cancel each other out. Post hoc tests of congruent

trials separated for ear of origin of the signal (Figures 5F and 5G)

are consistent with this suggestion. On the other hand,

combining the counter-phased modulation for criterion (the

sum of hits and false alarms, oppositely signed for each ear)

will sum the modulations in the binaural measurements. In this

interpretation, modulation of criterion is associated with percep-

tual changes [52, 53], rather than with modulation of a decision

boundary.

If the role of serial dependence is to bias perception toward

recent perceptual history (on the assumption of perceptual con-

tinuity), we should expect a positive serial dependence (aver-

aged over all delays) on the immediately previous trial (1-back),

as is normally observed in studies of serial dependence [3–10].

That we found robust 2-back effects strongly suggests that

1-back effects were also present, but not revealed in our data.

We propose two possible (non-mutually exclusive) explanations

of why this may be so. One is that forced-choice paradigms can

lead to sequential response biases, such as alternation [37],

which would tend to cancel out positive serial dependence

based on the previous stimulus (usually measured by reproduc-

tion [3, 4]). That the response-based analysis showed negative
Current Biology 29, 4208–4217, December 16, 2019 4215



serial dependency is consistent with response alternation, which

would have cancelled perceptual positive serial dependence.

The clear average serial dependence for trials two back is also

consistent, as double alternation of response would not lead to

cancelation. Another possibility is that the stimuli may have

caused both positive serial dependence and negative adaptation

aftereffects. Negative aftereffects tend to be shorter lived than

assimilative dependencies, and may therefore cancel out only

1-back, not 2-back, trials [11]. Whatever the reason for the lack

of positive serial dependence in the averaged 1-back results,

our study shows that oscillations may be a more sensitive signa-

ture of memory-based perceptual effects than simply looking at

average results. Many competing effects could reduce or annul

the measurement of average serial-dependence effects, without

affecting rhythmic, time-dependent oscillations.

To summarize, we have shown that when discriminating the

ear of origin of a brief monaural pure tone within dichotic white

noise, responses are biased rhythmically through alpha oscilla-

tions when the previous target had been presented to the

same ear. To account for these findings, we propose that pre-

sentation of a target potentiates circuit-specific reverberations

that rhythmically bias perceptual performance. The exact mech-

anisms of this process are yet to be understood, but it is clear

that alpha rhythms play a major role in combining expectations

and past perceptual history with sensory signals. It would be

interesting to study these effects further with neurophysiological

techniques, such as EEG, magnetoencephalography (MEG), or

functional near-infrared imaging.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Eighteen healthy adults with normal hearing took part in the experiment. Three were excluded for imbalanced left and right ear audi-

tory thresholds and one for very long reaction times (2.5 standard deviations from the group mean). Of the remaining 14 participants

(mean age 21.14 ± 4.22), 4 weremale and 2 left-handed. All participants providedwritten, informed consent. The studywas approved

by the Human Research Ethics Committees of the University of Sydney. We based our sample size estimations on our previous study

[20], which showed oscillations in auditory perceptual performance, and other studies on similar behavioral rhythms in vision [44, 54],

without running a formal power analysis.

METHOD DETAILS

Participants sat in a dark room and listened to auditory stimuli via in-ear tube-phones (ER-2, Etymotic Research, Elk Grove, Illinois)

with earmuffs (3M Peltor 30 dBA) to isolate external noise. On each trial, 2 s of dichotic broadband white-noise (randomly generated

each trial and uncorrelated between the two ears) were presented together with a monaural target tone. The noise burst served to

reset potential oscillations, similar to a visual or auditory cue [44, 45, 54] and action or saccadic execution [39, 55–57]. The target

(1000 Hz, 10 ms) was delivered randomly with equal probability to either ear during the 2 s noise burst, within 0.2–1.2 s from noise

onset. For each ear, the target intensity was kept near individual thresholds (75%accuracy), using an accelerated stochastic approx-

imation staircase procedure [58, 59]. Participants reported the ear of origin of the tone via button press (ResponsePixx, Vpixx Tech-

nologies, Saint-Bruno, Quebec). The next trial started after a silent inter-trial interval (ITI) of random duration ranging from 1.2–2.2 s.

Participants completed 2,800 trials (40 blocks of 70 trials with rests between blocks, and no feedback) after a practice block of 20

trials with feedback. Stimuli were presented using the software PsychToolbox [60] in conjunction with DataPixx (Vpixx Technologies)

in MATLAB (Mathworks, Natick, Massachusetts). Trials were excluded if the response occurred before the target onset or after the

noise offset, or if the reaction time (RT) exceeded the 99% confidence interval of that individuals’ RTs. In addition, we discarded trials

where the target intensity exceeded the 95% confidence interval of individuals’ thresholds.

QUANTIFICATION AND STATISTICAL ANALYSIS

Signal detection theory
To separate sensitivity and response bias, we computed d-prime, d’, and the decision criterion, c, using Equations 1 and 2 from signal

detection theory (SDT) [61, 62]. As illustrated in Figure 1B, the calculation of the hit rate (Hright) was based on the hits from the right
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target condition and the false alarm rate (FAleft) based on the false alarms from the left target condition. d’ is given by the difference

between z-transformed hit and false alarm rates:

d
0
=
z
�
Hright

�� zðFAleftÞffiffiffi
2

p : (Equation 1)

The bias of the responses was defined as positive for the left ear:

c = � 0:53
�
z
�
Hright

�
+ zðFAleftÞ

�
: (Equation 2)
Aggregate data analysis
We performed two analyses, one based on aggregate data (allowing sufficient data to bin trials into fine time-bins for analysis of

sensitivity and criterion), the other on individual data, allowing us to see variability across subjects. For the aggregate data analysis,

trials were pooled across all 14 participants and grouped into one hundred 10-ms bins, from 0.2 to 1.2 s post noise onset. The mean

number of trials per bin was 151 ± 24 for the left-target condition and 152 ± 25 for the right-target condition. For each bin, we

computed d’ and c as above and fitted the time-series with a sinusoidal function given by:

fðtÞ = A cosð2pft + fÞ+ a0; (Equation 3)

where t is time, a0 a constant andA andf the amplitude and phase of the sinusoidal fit, all free parameters. The frequency parameter f

was fixed between 4 and 12 Hz in 0.1 Hz steps and a non-linear least-squares method was used to obtain the best fit for each tested

frequency (a standard implementation inMATLABwith 400 iterations in total). Sensitivity displayed a decreasing non-linear trend over

time (see also [20]), which we removed before curve fitting. Detrending was not required for the criterion time series. The goodness of

fit R2 was used to test the significance of every fit by applying a permutation procedure [63]: responses of each individual trial were

randomized over all SOAs to generate 2,000 surrogate datasets, which we submitted to the same binning and curve fitting procedure

as the original data. To correct for multiple comparisons, we determined the maximal R2 for every surrogate dataset irrespective of

frequency. This resulted in a distribution of 2,000 maximal R2 (Figures 2D and 2E), against which we compared each fit to the original

dataset. Any frequency that exceeded the 95 percentile of the maximal-R2 distribution (dotted line in Figure 2C) was considered sig-

nificant. We also estimated the variability in the original aggregate data by applying the bootstrap method. We randomly selected the

same number of trials (with replacement) from the original data 2,000 times, and each surrogate dataset was submitted to the same

binning and curve fitting procedure as above.

Akaike information criterion
To estimate the relative quality of the harmonic model of Equation 3, we computed the Akaike information criterion (AIC) using the

residual sum of squares (RSS) with n = 100 (number of data bins) and k = 2 (number of parameters):

AIC = 2k + n ln RSS: (Equation 4)
Individual and group analyses
To examine the individual data for oscillations and evaluate their coherence across subjects, we used an approach based on single

trials (for similar approaches, see [32, 39]). The response yi (i = 1, 2. n, where n is the total number of trials) to a target at time ti
(i.e., the interval from noise onset to target onset in seconds) is modeled by the linear combination of harmonics at each tested

(angular) frequency as follows: bYn = b0 + b1 sinð2pftnÞ+ b2 cosð2pftnÞ; (Equation 5)

where Ŷn represents the predicted responses and b0, b1 and b2 are fixed-effect regression parameters estimated using the linear

least-squares method of MATLAB (fitlm function from the Statistics and Machine Learning toolbox). This general linear model

(GLM) model estimates the regression parameters adequately when the sampling rate is uniform across the time series. As this con-

dition may not always be met at the individual subject level, we included a third independent regressor containing information about

the stimulus: bYn = b0 + b1 sinð2pftnÞ+ b2 cosð2pftnÞÞ+ b3SðtnÞ; (Equation 6)

where S is the stimulus at time t and takes the value –1 or +1 for left and right target, respectively. For sensitivity, yi = 1 for correct and

yi =�1 for incorrect responses, and for response bias, yi = 1 for a ‘right’ response and�1 for ‘left’. Although binary responses can be

modeled with a logit or probit link function, non-linear transformation of Ŷnmade no difference in our study (for further discussion, see

[64]), so we performed no transformation of Ŷn. Using Monte Carlo simulation, we tested that the present GLM implementation de-

rives the exact amplitude and phase of a sinusoidal function, also in presence of high noise.

The significance of the model fit in Equation 6 was evaluated with a two-dimensional permutation test: we shuffled the SOAs of

each individual’s trials to create 2,000 surrogate datasets per subject and fitted each dataset with themodel described in Equation 6.

As with the original data, the resulting b1 and b2 were averaged across subjects for every frequency tested. This yielded a joined
Current Biology 29, 4208–4217.e1–e3, December 16, 2019 e2



distribution of 2,000 surrogatemeans for each frequency from 4-12Hz in 0.1-Hz steps. To correct formultiple comparisons, we deter-

mined themaximal vector of each joined distribution irrespective of the frequency. This resulted in a joint distribution of 2,000maximal

vectors, against which we compared the original group mean.

To evaluate the error in amplitude and phase across participants, we computed the average 2D scatter of the individual data points

(Figure 7B) using:

SD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPj v!�m v!j Þ2

N

s
; (Equation 7)

where N is the number of individual vectors. We obtained the amplitude SEM by projecting the SD values along the average vector

(mv!) and divided them by the
ffiffiffiffiffiffiffiffiffiffiffiffi
N� 1

p
. A similar procedure was applied to calculate the phase SEM, using propagation of errors. We

then obtained the one-sample 2D t-statistic from the ratio of the amplitude of the mean vector to the SEM of the amplitude. We

computed the Bayes factors for this 2D t test by applying the Bayesian Information Criterion (BIC) approximation from [65], imple-

mented in the freely available MATLAB toolbox BayesFactor [66], using the one-sample t-statistic for amplitude:

BF10z
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

 
1+

t2

df2

!�n
vuut ; (Equation 8)

where n is the sample size (14 participants) and df2 is the degree of freedom associated with the error term.

DATA AND CODE AVAILABILITY

For data analysis, we used off-the-shelf routines available in MATLAB (version R2018b) in combination with the MATLAB Curve

Fitting and Statistics and Machine Learning toolbox. Source data for the figures in the paper are available (https://doi.org/10.

17605/OSF.IO/SWQ4N).
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