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Abstract

Pupil dynamics alterations have been found in patients affected by a variety of neuropsychiatric conditions, in-
cluding autism. Studies in mouse models have used pupillometry for phenotypic assessment and as a proxy
for arousal. Both in mice and humans, pupillometry is noninvasive and allows for longitudinal experiments sup-
porting temporal specificity; however, its measure requires dedicated setups. Here, we introduce a convolu-
tional neural network that performs online pupillometry in both mice and humans in a web app format. This
solution dramatically simplifies the usage of the tool for the nonspecialist and nontechnical operators.
Because a modern web browser is the only software requirement, this choice is of great interest given its easy
deployment and setup time reduction. The tested model performances indicate that the tool is sensitive
enough to detect both locomotor-induced and stimulus-evoked pupillary changes, and its output is compara-
ble to state-of-the-art commercial devices.
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Significance Statement

Alteration of pupil dynamics is an important biomarker that can be measured noninvasively and across dif-
ferent species. Although pupil size is driven primarily by light, it can also monitor arousal states and cogni-
tive processes. Here we show an open-source web app that, through deep learning, can perform real-time
pupil size measurements in both humans and mice, with accuracy similar to commercial-grade eye trackers.
The tool requires no installation, and pupil images can be captured using infrared webcams, opening the
possibility of performing pupillometry widely, cost-effectively, and in a high-throughput manner.

Introduction
Pupillometry, the measurement of pupil size fluctua-

tions over time, provides useful insights into clinical set-
tings and basic research activity. Light level is the primary
determinant of pupil size, although non-light-driven pupil
fluctuations, widely assumed as an indicator of arousal
through locus coeruleus activity, can be used to index
brain state across species (McGinley et al., 2015; Lee and

Margolis, 2016; Reimer et al., 2016). Higher cognitive and
emotional processes are also able to evoke tonic or phasic
pupillary changes, such as attention (Binda et al., 2013a),
memory load (Wierda et al., 2012), novelty (Angulo-Chavira et
al., 2017; Krebs et al., 2018; Montes-Lourido et al., 2021),
pain (Connelly et al., 2014; Azevedo-Santos and DeSantana,
2018; Charier et al., 2019), and more general cortical sensory
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processing (Binda et al., 2013b; Lee and Margolis, 2016) in
humans and in animal models.
A growing body of work shows how pupillometry can

be used as a possible biomarker for numerous neurologic
and psychiatric conditions in early development and adult
subjects (Aleman et al., 2004; Blaser et al., 2014; Rorick-
Kehn et al., 2014; Frost et al., 2017; Nyström et al., 2018;
Chougule et al., 2019; Gajardo et al., 2019; Oh et al.,
2019, 2020; Artoni et al., 2020; Burley and van Goozen,
2020; Iadanza et al., 2020; Obinata et al., 2020; Winston
et al., 2020; El Ahmadieh et al., 2021). Spontaneous and
voluntary modulation of pupil fluctuations has also been
used to facilitate human–computer interaction in normal
subjects (Mathôt et al., 2016; Beggiato et al., 2018;
Ponzio et al., 2019) and patients with severe motor dis-
abilities. For example, pupil dynamics is used to assess
communication capability in locked-in syndrome, a cru-
cial factor for the determination of a minimally conscious
state (Olivia et al., 2013; Stoll et al., 2013). Pupillometry is
also becoming a valuable tool for child neurology, to facili-
tate risk assessment in infants. For example, the pupil
light reflex (PLR) during infancy seems to predict the later
diagnosis and severity of autism spectrum disorders
(ASDs; Nyström et al., 2018). Intriguingly, pupil alterations
are also present in several ASD mouse models (Artoni et
al., 2020).
Pupillometry has several advantages compared with

other physiological methods: it is noninvasive and can
be performed by nonspecialized personnel on noncol-
laborative and preverbal subjects (like infants), allow-
ing the design of longitudinal experiments to permit
temporal specificity. More importantly, it can be con-
ducted similarly across different species from mice to
humans, guaranteeing maximal translatability of the
protocols and results (Aleman et al., 2004; Rorick-
Kehn et al., 2014; Artoni et al., 2020). Given these as-
sumptions, it is vital to introduce a simple, versatile
tool used in a range of settings, from the laboratory to
the clinical or even domestic environment. Available
open-source methods require complicated steps for
the installation and configuration of custom software
not suitable for nontechnical operators. Moreover,
these tools were tested exclusively in one species

[mice (Privitera et al., 2020), humans (Yiu et al., 2019)], and
none of them were applied in cognitive experiments that usu-
ally involve small pupil changes associated with high
variability.
In this work, we have developed a deep learning tool

called MEYE, using convolutional neural networks (CNNs)
to detect and measure real-time changes in pupil size
both in humans and mice in different experimental condi-
tions. Furthermore, the MEYE web app, performs pupil
area quantification and blink detection, all within a single
network. By embedding artificial intelligence algorithms in
a web browser to process real-time webcam streams or
videos of the eye, MEYE can be used by nontechnical op-
erators, opening the possibility to perform pupillometry
widely, cost-effectively, and in a high-throughput manner.
This architecture is resistant to different illumination con-
ditions, allowing the design of basic neuroscience experi-
ments in various experimental settings, such as behavior
coupled with electrophysiology or imaging such as two-
photon microscopy. To describe the performance of the
MEYE web app in different settings, we tested the app in
both mice and humans. In mice, we recorded both run-
ning speed and pupil size during visual and auditory stim-
ulation (AS). In humans, we tested MEYE capabilities to
detect the PLR. Furthermore, we performed a visual odd-
ball paradigm (Liao et al., 2016; Aggius-Vella et al., 2020;
LoTemplio et al., 2021), comparing pupil size and eye po-
sition measurements obtained from MEYE with one of the
most used commercial eye-tracker systems: the EyeLink
1000. Finally, we released a dataset of 11,897 eye images
that can be used to train other artificial intelligence tools.

Materials and Methods
Datasets
For this study, we collected a dataset (Fig. 1A) com-

posed of 11,897 grayscale images of human (4285) and
mouse (7612) eyes. The majority of the pictures are of
mouse eyes during head fixation sessions (5061 sessions)
in a dark environment using infrared (IR; 850 nm) light
sources. In this environment, the pupil is darker than the
rest of the image. We also collected mouse eyes [two-
photon imaging mice (2P mice), 2551] during two-photon
Ca21 imaging. In this particular condition, the pupil is
inverted in color and tends to be brighter than the iris.
Finally, we acquired images of human eyes in IR light
(4285 eyes) during virtual reality (VR) experiments
(wearing a headset for virtual reality), using an endo-
scopic camera (www.misumi.com.tw/). The dataset
contains 1596 eye blinks, 841 images in the mouse,
and 755 photographs in the human datasets. Five
human raters segmented the pupil in all pictures (one
per image), using custom labeling scripts implemented
in MATLAB or Python by manual placement of an el-
lipse or polygon over the pupil area. Raters flagged
blinks using the same code.

CNN architecture
The CNN model (Fig. 1C) takes 128� 128 grayscale im-

ages as input and produces the following three outputs:
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(1) a 128� 128 probability map of each pixel belonging to
the pupil; (2) the probability the image contains an eye;
and (3) the probability the image depicts a blinking eye.
We evaluated three architectures: two were based on
DeepLabv31 (Chen et al., 2018), a family of image seg-
mentation models that use atrous convolutions and
spatial pyramid pooling, which are known to improve
robustness to scale changes. The two models differ for
the CNN backbone adopted, respectively, ResNet-50
(He et al., 2016) and MobileNet V3 (Howard et al., 2019)
CNNs. The third evaluated model is a specialized vari-
ant of the U-Net architecture (Ronneberger et al., 2015),
a widely used CNN in image segmentation tasks. The
model has an encoder–decoder “hourglass” architec-
ture; the encoder part comprises a sequence of convo-
lutional layers with ReLU activation and 2� 2 maximum
pooling operation, each halving the spatial resolution of
feature maps at every layer; this produces a sequence
of feature maps of diminishing spatial dimensions that

provides both spatially local information and global
context for the subsequent steps. Starting from the
last encoder output, the decoder part iteratively up-
samples and fuses feature maps with corresponding
encoder maps, using convolutional layers, to produce
the output pixel map. All convolutional layers have 16
3� 3 kernels and pad their input to obtain output of the
same shape. Convolutional layer upsampling and
downsampling were changed by a factor of 2 (Fig. 1C).
In all the tested architectures, eye and blink probabil-
ities are predicted by an additional branch that applies
global average pooling and a two-output fully con-
nected layer to the bottleneck feature map. The pixel
probability map and eye/blink probabilities are com-
puted by applying the sigmoid activation to the
network outputs element wise. Among the tested ar-
chitectures, we chose to adopt the UNet variant in this
work, as we observed it provided the best tradeoff in
terms of speed and segmentation quality (for further

Figure 1. Dataset, CNN architecture, and performances. A, Examples of images taken from the dataset. The first image de-
picts a head-fixed mouse with dark pupils, the second one is a head-fixed mouse with a bright pupil, during two-photon mi-
croscope sessions. The last image is a human eye taken during experiments wearing virtual reality goggles. B, The 64
examples of data augmentation fed to CNN. The images are randomly rotated, cropped, flipped (horizontally or vertically),
and changed in brightness/contrast/sharpness. C, CNN architecture with an encoder–decoder “hourglass” shape. The en-
coder part comprises a sequence of convolutional layers. Starting from the last encoder output, the decoder part iteratively
upsamples and fuses feature maps with corresponding encoder maps to produce the output pixel map. The pixel probability
map and eye/blink probabilities are computed by applying the sigmoid activation to the network outputs in an element-wise
manner.
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information see: https://github.com/fabiocarrara/meye/wiki/
MEYE-Models).

Augmentation, training, and validation
We randomly split the dataset into training, valida-

tion, and test subsets following a 70%/20%/10% split.
We performed strong data augmentation during the
training phase by applying random rotation, random
cropping, random horizontal and vertical flipping, and
random brightness/contrast/sharpness changes; im-
ages were resized to 128� 128 before feeding them to
the CNN (Fig. 1B).
For validation and test images, we used a 128� 128

crop centered on the pupil. We computed the binary
cross-entropy for all outputs (pixels and eye/blink logits)
and took the sum as the loss function to minimize. The
network was trained with the AdaBelief optimizer (Zhuang
et al., 2020) for 750 epochs with a learning rate of 0.001.
The best performing snapshot on the validation set was
selected and evaluated on the test set.

MEYE: web browser tool
We built a web app for pupillometry on recorded or live-

captured videos harnessing a CNN segmentation model
as the core component. The trained models have been
converted to a web-friendly format using TensorFlow.js,
thus enabling predictions on the user machine using a
web browser.
This choice greatly facilitates the deployment and re-

duces setup time, as a modern web browser is the only
minimum requirement. Once loaded, an Internet connec-
tion is not mandatory, as no data leaves the user’s
browser, and all the processing is performed on the
user’s machine. This implies that performance greatly de-
pends on the user’s hardware; if available, hardware
(graphics processing unit (GPU)] acceleration is exploited
automatically by TensorFlow.js. In our tests, a modern
laptop shipping an Intel(R) Core(TM) i7-9750H 2.60GHz
CPU and an Intel(R) UHD Graphics 630 GPU can process
up to 28 frames/s (fps).
The web app also offers additional features that facili-

tate the recording process, such as the following: proc-
essing of prerecorded videos or real-time video streams
captured via webcam; ROI placement via user-friendly
web user interface (UI; drag and drop) and automatic re-
positioning following tracked pupil center; embedded tun-
able preprocessing (image contrast/brightness/gamma
adjustment and color inversion) and postprocessing (map
thresholding and refinement via mathematical morphol-
ogy); support for registering trigger events; live plotting of
pupil area and blink probability; and data export in CSV
format including pupil area, blink probability, eye position,
and trigger channels.

Behavioral experiments onmice
Animal handling
Mice were housed in a controlled environment at 22°

C with a standard 12 h light/dark cycle. During the light
phase, a constant illumination ,40 lux from fluore-

scent lamps was maintained. Food (standard diet,
4RF25 GLP Certificate, Mucedola) and water were
available ad libitum and were changed weekly. Open-
top cages (36.5� 20.7� 14 cm; 26.7� 20.7� 14 cm for
up to five adult mice; or 42.5� 26.6� 15.5 cm for up to
eight adult mice) with wooden dust-free bedding were
used. All the experiments were conducted following
the directives of the European Community Council and
approved by the Italian Ministry of Health (1225/2020-
PR). All necessary efforts were made to minimize both
stress and the number of animals used. The subjects
used in this work were three female 3-month-old
C57BL/6J mice for the auditory stimulation and five
male 2-month-old mice for the VR experiment.

Surgery
The mouse was deeply anesthetized using isoflurane

(3% induction, 1.5% maintenance). Then it was mounted
on a stereotaxic frame through the use of ear bars.
Prilocaine was used as a local anesthetic for the acoustic
meatus. The eyes were treated with a dexamethasone-
based ophthalmic ointment (Tobradex, Alcon Novartis) to
prevent cataract formation and keep the cornea moist.
Body temperature was maintained at 37°C using a heat-
ing pad monitored by a rectal probe. Respiration rate and
response to toe pinch were checked periodically to main-
tain an optimal level of anesthesia. Subcutaneous injec-
tion of lidocaine (2%) was performed before scalp
removal. The skull surface was carefully cleaned and
dried, and a thin layer of cyanoacrylate was poured over
the exposed skull to attach a custom-made head post
that was composed of a 3D-printed base equipped with a
glued set screw (12 mm long, M4 thread; catalog
#SS4MS12, Thorlabs). The implant was secured to the
skull using cyanoacrylate and UV curing dental cement
(Fill Dent, Bludental). At the end of the surgical procedure,
the mice recovered in a heated cage. After 1 h, mice were
returned to their home cage. Paracetamol was used in the
water as antalgic therapy for 3 d. We waited 7 d before
performing head-fixed pupillometry to provide sufficient
time for the animal to recover.

Head fixation
In the awake mouse head fixation experiments, we

used a modified version of the apparatus proposed by
Silasi et al. (2016), equipped with a 3D-printed circular
treadmill (diameter, 18 cm). Components are listed in
Table 1. A locking ball socket mount (TRB1/M) was se-
cured to an aluminum breadboard (MB2020/M) using two
optical posts (TR150/M-P5) and a right-angle clamp
(RA90/M-P5). The circular treadmill was blocked between
the base plate pillar rod and the optical post through a
ball-bearing element (BU4041, BESYZY) to allow the spin-
ning of the disk with low effort. To couple the head-fixing
thread on the mouse to the locking ball, an ER025 post
was modified by retapping one end of it with M4 threads
to fit the ball and socket mount. Velocity was detected
using an optical mouse under the circular treadmill.
Pupillometry was performed using a USB camera (oCam-
5CRO-U, Withrobot) equipped with a 25 mm M12 lens
connected to a Jetson AGX Xavier Developer Kit (NVIDIA)
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running a custom Python3 script (30 fps). The Jetson
hardware was connected with an Arduino UNOmicrocon-
troller board through GPIO (general purpose input/output)
digital connection. The Arduino UNO managed the audi-
tory stimuli through a speaker (3 inch; model W3-1364SA,
Tang Band Speaker).

Behavioral procedures
Mice were handled for 5min each day during the week

preceding the experiments; then, they were introduced
gradually to head fixation for an increasing amount of time
for 5 d. During days 1 and 2, we performed two sessions
of 10min of head fixation, one in the morning and one in
the afternoon. On day 3, we performed one session of 20
min; on day 4, 30 min; and on day 5, 35 min. Each record-
ing started with 5min of habituation. We exposed the ani-
mal to auditory stimuli during the last day. During each
head fixation session, a curved monitor (24 inches; model
CF390, Samsung) was placed in front of the animal (dis-
tance, 13 cm) showing a uniform gray with a mean lumi-
nance of 8.5 cd/m2. The frequency of tone 1 was 3000Hz,
and of tone 2, 4000Hz, both at 70dB, a duration of 20 s,
and an interstimulus interval of 120 s. Virtual reality was
composed of a g-linearized procedural virtual corridor
with episodic visual stimulation written in C# and Unity.
The virtual corridor was composed of sine-wave gratings
at different orientations (wall at 0°; floor at 90°), and spatial
frequencies (from 0.06 to 0.1 cycles/°). The position of the
animal in the virtual corridor was updated using an optical
mouse connected to the circular treadmill. The episodic
visual stimulus consisted of a square wave grating patch
of 55° (in width and height) of visual space in the binocular
portion of the visual field. The grating parameters were as
follows: luminance, 8.5 cd/m2; orientation, 0°; contrast,
90%; spatial frequency, 0.1 cycles/°; drifting, 0.5 cycle/s.

Data analysis
Data has been analyzed using Python 3. All tracks were

loaded, and blink removal was applied using the blink de-
tector embedded in MEYE. Blink epochs were filled using
linear interpolation and median filtering (0.5 s). Spearman
r rank-order correlation was performed using the function
corr from Python library pingouin (Vallat, 2018). The z-
score was obtained for each trial using the formula
z ¼ x� �xbaselineð Þ=sbaseline, where and �xbaseline and sbaseline
were respectively the average and the SD of the baseline.

To evaluate whether event-related transients (ERTs) am-
plitude was significantly different from baseline, a two-
way repeated-measures ANOVA was computed on each
time sample using the pingouin function rm_anova. Post
hoc analyses and multiple-comparison p value correction
were conducted using the function pairwise_t tests from
pingouin. For both pupil size and velocity, we compared
each time sample after sensory stimulation with the aver-
age value of the baseline, adjusting the p values using
Benjamini–Hochberg FDR correction. For the behavioral
state analysis, locomotion activity was identified using a
threshold algorithm. We tagged as moving all the samples
in which velocity was �10% with respect to the maximal
speed of the animal. Paired t tests between behavioral
states were performed using the function t test from pin-
gouin. Comparison of eyes movements was conducted
normalizing (range between �1 and 1) data from both set-
ups, upsampling MEYE data from 15 to 1000 fps using lin-
ear interpolation, and then calculating the mean absolute
error (MAE), which was performed using the Python func-
tionmean_absolute_error from the library sklearn.

Behavioral experiments on humans
PLR
Pupillometry has been performed using a MacBook Pro

(Retina, 13 inch, Early 2015, Intel Core i5 dual-core
2.7GHz, 8GB of RAM, Intel Iris Graphics 6100 card, 1536
MB) running the MEYE application on Firefox (84.0). The
tool is able to compute online pupil size quantification,
plotting the instantaneous pupil area and saving the re-
sults on file. Furthermore, the tool accepts four independ-
ent manual push-button triggers (keys “T” or “Y” on the
keyboard). This feature allowed us to annotate stimulation
events. A USB IR webcam (model Walfront5k3psmv97x,
Walfront) equipped with a Varifocal 6–22 mm M12 objec-
tive (catalog #149129, Sodial) was used to acquire images
of the eye. The camera was equipped with six IR LEDs to
illuminate the eye uniformly, optimizing contrast between
the iris and the pupil. Photic stimulation was delivered
using an Arduino Due (Arduino) microcontroller connected
via USB to the notebook and programmed to emulate a
keyboard. The Arduino emulates a keyboard (using the
keyboard. h library) to send event triggers to MEYE in the
form of keystroke events. The microcontroller drives a
stripe of four LEDs (WS2813, WorldSemi) using the

Table 1: Head fixation apparatus components (thorlabs.com)

Part number Description Quantity Price (e)
TRB1/M Locking ball and socket mount M4 1 55.83
TR150/M-P5 Optical post M4–M6, 150mm, 5 pack 1 29.97
RA90/M-P5 Right-angle clamp 1 45.7
MB2020/M Aluminum breadboard 1 72.3
RS075P/M Pedestal pillar post 1 21.63
SS4MS12 Set screws 12mm long, M4 1 5.61
AP4M3M Adaptor M4-M3 5 1.91
ER025 Cage assembly rod 5 4.73
SS6MS12 Set screws 12mm long, M6 1 5.55
CF038C-P5 Clamping fork 1 46.49
Total 289.72
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FastLED. h library, flashing bright white light for 500ms
with an interstimulus interval of 5 s (see Fig. 3A). The sub-
ject sat in front of a monitor screen (24 inches; model
CF390, Samsung) at a distance of 60 cm, with the head
stabilized by a chin rest and instructed to maintain fixation
on a small dot presented in the center of the screen for
the whole duration of the recording (57 s). A total of 10
flash stimuli have been presented through the strip of
LEDs mounted above the screen.

Oddball paradigm corecordings
To compare the performances shown by the CNN sys-

tem with that of a state-of-the-art commercial software,
we coregistered pupillometry using MEYE and an EyeLink
1000 system, while nine participants (three males, six fe-
males; average age, 28.78 years) executed an oddball
paradigm. The experiment was conducted in a quiet, dark
room. The participant sat in front of a monitor screen
(88� 50 cm) at a distance of 100 cm, with their head
stabilized by a chin rest. The viewing was binocular.
Stimuli were generated with the PsychoPhysics Toolbox
routines (Brainard, 1997; Pelli, 1997) for MATLAB (MATLAB
r2010a, MathWorks) and presented on a g-calibrated
PROPixx DLP LED projector (VPixx Technologies) with a
resolution of 1920� 1080 pixels, and a refresh rate of
120Hz. Pupil diameter was monitored at 1 kHz with an
EyeLink 1000 system (SR Research) with an infrared
camera mounted below the screen and recording from
the right eye. The participant was instructed to maintain
fixation on a small dot (0.5°) presented in the center of
the screen for the whole duration of the recording (300
s). In this study, the visual stimuli consisted of the ap-
pearance of a high-probability stimulus (80% of times)
defined as “Standard” and a lower probability stimulus
(20% of times) defined as “Target.” The Standard stimu-
lus consisted of a 100% contrast-modulated annular
grating (mean luminance, 25 cd/m2), horizontally ori-
ented, with a spatial frequency of 0.5 cpd, and with inner
and outer diameters of 1.5° and 5°, respectively. The
edges of the annulus were smoothed by convolving the
stimulus with a Gaussian mask (s = 0.5°). The Target
stimulus had the same parameters as the Standard stim-
ulus except that the orientation that was 45° (see Fig.
4A). The presentation duration of each trial, either the
Standard (0°) or Target (45°) trial, was 200ms with an inter-
trial interval between two consecutive trials of 2800ms.
The phases of both the Target and the Standard stimuli
were randomized across trials. The participants were in-
structed to press a button for a Target stimulus and not to
respond for a Standard stimulus. The z-scored ERTs were
computed as described for mice. The correlation was per-
formed by taking the amplitude of the peaks of the Targets
for each subject using both EyeLink and MEYE, and then
performing the Spearman r rank-order correlation be-
tween the two measures.

Eye movement corecordings
For eye-tracking recording, we used both the MEYE

tool and EyeLink 1000, as described above. In the smooth
pursuit condition, a small dot (0.5°) moved on the screen
horizontally, changing direction every 20° of the visual

field with a constant velocity of 8°/s. In the saccades con-
dition, every 2.5 s the small dot abruptly changes position
horizontally with a span of 20°.

Offline video analysis
The MP4 videos were loaded into MEYE, and the pa-

rameters were chosen by visually inspecting the quality of
the pupillometry. Threshold values were 0.25, 0.15, and
0.5, with morphology FALSE, TRUE, TRUE for “human,”
“mouse,” and “2P-mouse” videos respectively. Once the
video analysis was completed, the CSV file was loaded
into Python. Blink removal and linear interpolation were
applied, then the track was plotted using the Python li-
brarymatplotlib.

Data availability
The code and web app are freely available on Github:

github.com/fabiocarrara/meye. MEYE is available at:
www.pupillometry.it. MEYE wiki is available at: https://
github.com/fabiocarrara/meye/wiki. The dataset is avail-
able on: https://doi.org/10.5281/zenodo.4488164.

Results
Pupillometry in head-fixed mice
We tested our CNN-based pupillometer in two behavioral

experiments involving locomotion-induced and stimulus-
evoked pupillary changes. Pupil size was simultaneously re-
corded with running speed from head-fixed mice free to run
on a circular treadmill (Fig. 2A). We used two different stimu-
lation protocols: AS, and visual stimulation while the animal
is freely exploring VR. The VR experiment included an initial
period of habituation in which the animal navigated inside a
virtual corridor for 5min. After this period, a square visual
stimulus was presented in the binocular portion of the visual
field (duration, 20 s; interstimulus interval, 120 s, 10 times;
Fig. 3A,B). The AS experiment was conducted with the
same structure as the VR experiment and using auditory
stimulus previously used to induce a defensive behavior de-
tectable as a pupillary and behavioral response (Xiong et al.,
2015; Wang et al., 2019; Hersman et al., 2020; Li et al.,
2021). An initial period of habituation was followed by audi-
tory stimulation using two tones (tone 1, 3kHz; tone
2, 4kHz; duration, 20 s; interstimulus interval, 120 s; Fig.
2A,B). We first set out to evaluate whether CNN can detect
event-related pupil transients (i.e., ERTs) because of sensory
stimulation in the VR. We averaged pupil size and running
velocity during a 15 s temporal window centered on visual
stimulation (Fig. 3C). We detected a significant pupillary dila-
tion after the onset of the visual stimulus and no changes in
evoked locomotion (pupil: p, 0.001, post hoc test; stimulus
duration, 1.2–2.7 s; adjusted p values, 0.05, two-way re-
peated-measures ANOVA; velocity: p = 0.96, two-way re-
peated-measures ANOVA). This ERT is an orienting-related
pupil response and a proxy of the arousal change because
of stimulus detection (Wang and Munoz, 2015; Montes-
Lourido et al., 2021). In the AS experiment, we also found an
increase in pupil size, but dilation was associated with a sig-
nificant increase in stimulus-induced locomotor activity
(pupil: p , 0.001, post hoc test; stimulus duration, 1–10 s;
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adjusted p values, 0.05, two-way repeated-measures
ANOVA; velocity: p. 0.01, post hoc test; stimulus duration,
3–5.3 s; adjusted p values, 0.05; two-way repeated-meas-
ures ANOVA; Fig. 2C). Finally, we calculated pupil size dur-
ing baseline periods before sensory stimulation both in the
VR and the AS experiments. We found that during locomo-
tion the pupil was significantly larger than in stationary peri-
ods both in the AS (p, 0.01, paired t test; Fig. 2D) and in
the VR (p, 0.01, paired t test; Fig. 3D) experiments.
These results demonstrate that CNN pupillometry

can detect the mouse locomotion-induced and stimu-
lus-evoked pupillary changes and can be used to
monitor behavioral state change during head fixation
experiments.

Web browser application to perform real-time
pupillometry experiments
To greatly expand the use of our CNN-based pupillom-

eter, we implemented the CNN in a web browser (MEYE;
Fig. 4B), and we tested whether it could also be used in
humans. To test this possibility, we designed a simple ex-
periment aimed to measure PLR evoked by brief flashes
of light on the human eye. The experiment included 10
flash events with an interstimulus interval of 5 s (Fig. 4C,
dashed vertical lines). The results showed a clear light-in-
duced modulation of pupil size in correspondence with
each flash onset. Aligning and averaging all the traces
along with the events, PLR can be quantified in both the
raw trace (change from baseline, 44.53 6 0.67%) and z-
scored trace (SD from baseline, 14.596 2.05; Fig. 3D,E).
To detect whether it is possible to measure cognitively
driven pupil signals using the reliable MEYE tool, we per-
formed pupillometry while participants executed an odd-
ball task, a commonly used paradigm for cognitive and
attentional measurement. This task is based on the prin-
ciple by which pupil dilation is stronger in response to
rare stimuli and can be used as a physiological marker
for the detection of deviant stimuli (Liao et al., 2016). This
experiment has been conducted by recording the same
eye using both the MEYE tool and an EyeLink 1000 sys-
tem. According to Google Scholar, the EyeLink 1000
system is one of the most used eye trackers in psychol-
ogy, psychophysics, and neuroscience, with .17,000
scientific publications mentioning this tool. During the
oddball experiment, the subject was instructed to main-
tain fixation on a small dot presented in the center of the
screen, pushing a button only when the Target stimulus
appears on the screen and not responding to the
Standard stimulus (Fig. 5A). Averaging and comparing
the responses to Standard and Target gratings result in
significantly stronger pupil dilation for the Target stimu-
lus than the Standard stimulus, which is detected by
both of the recording systems (MEYE: p, 0.001, paired

Figure 2. Pupillometry in head-fixed mice. A, Setup for head-
fixed pupillometry in the awake mouse. The head of the mouse
is fixed to a custom-made metal arm equipped with a 3D-
printed circular treadmill to monitor running behavior. In the
meantime, pupillometry is performed using CNN. B, The aver-
age fluctuations of pupillometry and velocity in all experimental
mice. Dashed pink and yellow areas represent the onset and
duration of auditory stimuli. Evoked peaks in both pupil size
(blue line) and velocity (green line) are clearly noticeable during
auditory stimulation. C, Average event-related transients for
both pupil size and velocity. Colored areas represent stimulus
onset and duration. Red areas in the top part of the plot repre-
sent statistically significant data points. D, Sensibility of the

continued
system to detect locomotor-induced arousal fluctuations.
Average pupil size is significantly affected by the behavioral
states of the animal. During running epochs (Moving) the pupil
is significantly more dilated than during the resting state
(Stationary). ***p . 0.001.
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t test; EyeLink: p, 0.001, paired t test; Fig. 5B,C). No dif-
ferences have been found for the responses evoked by
the Target stimulus between the MEYE tool and the
EyeLink system (p = 0.327, paired t test; Fig. 4B, inset).

Figure 4. Web browser pupillometry experiment. A, Exper-
imental setup for running the PLR stimulation and in the mean-
time performing pupillometric recordings. The PC is connected
to the Internet by running an instance of the MEYE tool in the
web browser. A USB camera, equipped with an IR light source,
is focused on the eye of the subject. The photic stimulus is de-
livered using an LED array driven by an Arduino Due microcon-
troller board. The Arduino Due board is connected to the PC,
emulating a keyboard and sending keystroke stimulus triggers
to the MEYE tool. B, A picture of MEYE GUI. The subject during
the recording is visualized as a streaming video. An ROI is used
to locate the eye, and a preview of the estimation of the pupil is
superimposed on the image of the subject. The GUI allows to
set different parameters of postprocessing (map thresholding and
refinement via mathematical morphology). C, Raw trace of the ex-
periment (blue). Dashed lines locate the onset of flash stimuli. The
green rectangles locate the onset and duration of blinks. The sam-
ples corresponding to blinks are removed and linearly interpolated
(in red). D, Average event-related transient to flash stimulation in
raw values. After the onset of the stimulus (dashed line), a strong
constriction of the pupil is observed (44.53%). E, The z-score of the
average event-related transient seen in D. The average nadir ampli-
tude is 14.59 SDs from baseline.

Figure 3. Pupillometry and VR in head-fixed mice. A, Setup for
head-fixed pupillometry in VR in the awake mouse, showing the ha-
bituation phase (left), in which only the virtual corridor is shown, and
the stimulation phase, in which a visual stimulus appears above the
virtual corridor, in the binocular portion of the visual field. B, The av-
erage fluctuations of pupillometry and velocity in all experimental
mice. Dashed gray areas represent the onset and duration of audi-
tory stimuli. C, Average event-related transients for both pupil size
and velocity. Colored areas represent stimulus onset and duration.
Red areas in the top part of the plot represent statistically significant
data points. D, Sensibility of the system to detect locomotor-induced
arousal fluctuations. Average pupil size is significantly affected by the
behavioral states of the animal. During running epochs (Moving), the
pupil is significantly more dilated than during the resting state
(Stationary). ***p. 0.001.
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Moreover, the single-subject pupillary evoked ampli-
tudes show a significant positive correlation between the
two techniques (r = 0.88, p = 0.01, Spearman correla-
tion) with .75% of the variability explained by the linear
model. Pupil size is known to covary with eye position in
video-based measurements (Hayes and Petrov, 2016),
producing foreshortening of the pupillary image because
the camera is fixed but the eye rotates. To overcome this
issue, there are several possible solutions, as follows:
the simplest one requires constant fixation throughout
each trial, but, if this requirement cannot be satisfied
(e.g., in sentence reading), the position of the pupil at
each sample can be used to correct and mitigate the es-
timation error. Thus, we decided to quantify the agree-
ment between positional outputs provided by MEYE and
EyeLink for horizontal eye movements. We designed the
following two tasks: in the first task, a dot smoothly trav-
eled horizontally on the screen from left to right and vice
versa at a velocity of 8°/s and spanning 20°, producing
slow and smooth pursuit eye movements. In the other
experiment, a dot jumped every 5 s from one position to
the other (spanning 20°), producing large, fast, and ab-
rupt saccades. Results (Fig. 4D) show that smooth pur-
suit movements generate a sinusoidal change of position

with a good agreement between both systems (MAE,
0.04). The second task, inducing saccades, produces a
slightly larger error (MAE, 0.073). This error is mainly be-
cause of the much lower sampling rate of MEYE (MEYE,
15 fps; EyeLink, 1000 fps). This means that even if MEYE
provides the exact positional information for each sam-
ple, it has a lower performance in adequately describing
fast eye movements, such as saccades. Thus, MEYE
provides the data required for post hoc correction of
pupil measures, although it should be used with caution
for measuring saccades.

Web browser application to perform pupillometry on
videos
MEYE can also be used as an offline tool to analyze pu-

pillometry videos in various file formats, depending on the
video codec installed in the web browser. To demonstrate
the feasibility of performing pupillometry on videos cap-
tured in a variety of situations and in both mice and hu-
mans, we sampled three videos with a duration of 40 s
from different experiments carried in our laboratory. Each
video can be loaded as a demonstration in the web app
to reproduce the same plots seen in Figure 6. Three

Figure 5. Cognitively driven pupillary changes. A, Visual oddball procedure. The participant is instructed to fixate a small red dot
placed at the center of the screen and to push a button only when the Target visual stimulus appears. B, Average pupil waveforms.
Average pupil response to Standard and Target stimuli for both the MEYE tool (blue, left) and the EyeLink system (red, right). The
inset represents comparison between the evoked response to the Target stimulus in both setups. C, Average pupil response.
Difference between the Standard and Target stimuli recording using the MEYE tool (top) and the EyeLink system (middle). The bot-
tom graph represents the correlation between MEYE and EyeLink data. D, Eye movement data. Comparison between the MEYE
tool (blue) and EyeLink system (red) during smooth pursuit task (top) and saccades (bottom).
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conditions were analyzed. The first condition can be
found by pressing the “Mouse” button in the DEMO sec-
tion of the graphical UI (GUI). It depicts a head-fixed
mouse running on a circular treadmill under IR illumination
and watching a uniform gray screen at 10 cd/m2 (Fig. 6A).
The second is a mouse under a two-photon microscope
(button “2P mouse”), walking on a cylindrical treadmill
and showing clear dilation events because of locomotion
(Fig. 6B). The third is found by pressing the button
“Human,” starting 40 s of footage of a human subject
wearing VR goggles projecting a uniform gray at 15 cd/m2

(Fig. 6C). These results show that offline pupillometry can
be performed in various conditions and in both mice and
humans.

Discussion
In this work, we demonstrated that MEYE is a sensitive

tool that can be used to study pupil dynamics in both hu-
mans and mice. Furthermore, by providing eye position,

MEYE allows post hoc control of the possible effects of
eye movements on pupil measures (Hayes and Petrov,
2016). MEYE can detect both locomotion-induced and
stimulus-evoked pupil changes with a peak latency of 1 s
in a variety of conditions: mice with black pupils in normal
illumination conditions; and mice with bright pupils result-
ing from laser infrared illumination. This flexibility allows
the use of MEYE in combination with two-photon, wide-
field imaging, and electrophysiological techniques widely
adopted in awake or anesthetized mice. Furthermore,
MEYE can be used to design stand-alone experiments
using cost-effective hardware with performance compa-
rable with that of state-of-the-art commercial software. In
this experiment, we used a USB webcam with a varifocal
objective that allows focal adjustment concentrated on
the eye. The cost of the imaging equipment is ,50e
(Tables 2, 3) and requires no knowledge of coding to set
up. The flashing stimulus apparatus requires a basic
understanding of Arduino boards and can be assembled
at a price of ,50e. The overall cost of the apparatus is

Figure 6. Offline movies analysis. A, Awake head-fixed mouse running on a treadmill, recorded for 40 s. The gray area represents a
blink, and the trace of the blink is removed and linearly interpolated (red line). B, Awake mouse during two-photon calcium imaging.
Here a brighter pupil is clearly visible with respect to A. Blinking epochs are removed and linearly interpolated. C, Pupillometry per-
formed on a human subject, with a higher blinking rate with respect to mice. In all figures, the inset images represent the ROIs.
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,100e. Our code can be used in two different ways, to
satisfy many needs. One way relies on the stand-alone
web browser tool, which allows running MEYE on almost
any device, from scientific workstations to notebooks or
even smartphones. The other way uses a dedicated
Python script running the CNN locally on a workstation.
This latter case is suited for experiments with specific re-
quirements, like high and stable frame rate or online proc-
essing of pupil size in which on-the-fly pupil computer
interaction is required.

Comparison with other methods
Valid open-source and commercial alternatives exist,

but most of them are dedicated to gazing tracking and/or
pupillometry. Commercial options are costly (https://tobii.
com, https://sr-research.com, https://neuroptics.com),
whereas open-source code requires programming knowl-
edge and most open-source alternatives are explicitly
dedicated to one species (Yiu et al., 2019; Privitera et al.,
2020). One study (Privitera et al., 2020) assessed pupil di-
lation in mice through DeepLabCut (Mathis et al., 2018), a
technique for 3Dmarkerless pose estimation based on trans-
fer learning. This approach, albeit powerful, is conceptually
different since it is trained on user-defined key points instead

of on using the entire pupil to perform semantic segmenta-
tion. The former technique is more suited to track and locate
arbitrary objects on an image, while the latter technique is fo-
cused on amore precise quantification of even small changes
of the object area since pixelwise segmentationmasks are re-
fined iteratively using local and global contexts.
We compared our architecture with the first stage of

DeepLabCut, which implements an image segmentation
task (leaving out keypoint extraction), which is in common
with our pipeline.
For a fair comparison, we trained the image segmenta-

tion networks used in DeepLabCut on our dataset. Table
4 shows that our architecture can achieve a higher num-
ber of frames per second and a superior segmentation
performance (higher dice coefficient) with respect to the
DeepLabCut models.

Possible preclinical and clinical applications
The possible contribution of the web app technology re-

sides in its portability: no software needs to be manually
installed, and configuration is minimal. Only a clear IR
image of the subject’s eye is required. The performances
of the tool are dependent on the host computer, but it
runs at .10 fps in most of the machines tested. This

Table 2: Hardware for PLR

Part no. Description Quantity Price (e) Store Manufacturer
Walfront5k3psmv97x USB webcam 1 33.48 Amazon Walfront
149129 Varifocal M12 lens 1 12.03 Amazon Sodial
A000062 Microcontroller Arduino Due 1 35 Arduino store Arduino
1312 4 NeoPixel RGB LEDs 1 6.53 Adafruit Adafruit
Total amount 87.04

Table 3: Statistical table

Figure Type of test Statistical data
Figure 1 No statistical tests
Figure 2C Two-way repeated-measures ANOVA Pupil: F = 10.56, p, 0.001, ng2 = 0.43

Velocity: F = 1.47, p , 0.01, ng2 = 0.2
Figure 2D Parametric paired t test T = �8.4395, p, 0.01, BF10 = 14.1
Figure 3C Two-way repeated-measures ANOVA Pupil: F = 7.42, p, 0.001, ng2 = 0.42

Velocity: F = 0.75, p , 0.96, ng2 = 0.1)
Figure 3D Parametric paired t test T = �11.1, p, 0.001, BF10 = 77.5
Figure 5C1 Parametric paired t test T = �4.64, p, 0.001, BF10 = 62.9
Figure 5C2 Parametric paired t test T = �5.41, p, 0.001, BF10 = 204.03
Figure 5C3 Spearman correlation r = 0.9; 95% CI = [0.46, 0.98], r2 = 0.78, p, 0.01, power = 0.9
Figure 6 No statistical tests

BF, Bayes factor.

Table 4: Comparison among CNN models

CNN model Train/test set mDice FPS (Weba) FPS (Kerasb) FLOPS Parameters, n
mini-UNet Human/mouse eyes 84.0% 23.2 45.2 0.2G 0.03 M
DeepLabv31/ResNet-50 ImageNet 1 finetune on

human/mouse eyes
80.1% ,1 28.7 14.1G 26.8 M

DeepLabv31/Lite-MobileNet-
V3-Small

ImageNet 1 fine-tune on
human/mouse eyes

69.0% 18.8 34.8 0.3G 1.1 M

aDell Laptop: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz; Intel UHD graphics 630 GPU; TensorFlow.js; backend: WebGL Browser: Microsoft edge 90.0.818.56.
bUbuntu PC: Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz; GeForce RTX 2080 Ti GPU; Python 3.6.91TensorFlow 2.4.1. FLOPS, FLoating point Operations Per
Second; G, gigaFLOPS; M, mefaFLOPS.
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advantage is particularly useful for settings with limited re-
sources and space or for educational purposes. Web
browser-embedded pupillometry will also be crucial for
human scientific research, and clinical and preventive
medicine. It would also be a promising tool in the recently
growing field of telemedicine, given its minimal setup that
can run on an average notebook computer or even on a
smartphone, and that it allows possible large-scale re-
cruitment of subjects directly in their own homes. This
greatly facilitates infant, psychiatric, and motor-impaired
patients’ compliance, particularly for longitudinal research
designs. We also released an open-source database of
eyes composed of .11,000 images in various settings:
head-fixed mice (black pupil); head-fixed two-photon imag-
ing mice (white pupil); and human eyes. This dataset will
grow over time to introduce new species and new use cases
to increase, update, and strengthen MEYE performance. An
updated list of planned and executed developments of
MEYE can be found in the “Future Development” section of
the GitHub Wiki. The possible scenarios can be further ex-
panded in the future, because of the dynamic nature of CNN.
It can be updated from the source, providing instantaneous
updates on each computer running an instance of the pro-
gram. Our hope is to create a community that refines and
consolidates pupillometric performances to produce a tool
that can be applied in different environments.
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