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Humans and many other species spontaneously associ-
ate numbers with space, even in early infancy (de 
Hevia & Spelke, 2010; Drucker & Brannon, 2014; 
McCrink & Opfer, 2014; Rugani et  al., 2015). Under 
many conditions, number-to-space mapping is nonlin-
ear, following a logarithmic-like compression. Com-
pressive mapping is most evident in children (Kim & 
Opfer, 2017) but becomes progressively more linear 
with schooling in neurotypical children (Dehaene 
et al., 2008; Kim & Opfer, 2017; Opfer & Siegler, 2007). 
Individuals with dyscalculia show more number-line 
nonlinearities than age-matched neurotypical individu-
als (Anobile et al., 2019; Geary et al., 2008). Adults also 
show compressive mapping under certain circum-
stances, such as lack of formal education (Dehaene 
et al., 2008) or deprived attentional resources (Anobile, 
Cicchini, & Burr, 2012; Anobile, Turi, et al., 2012; Dotan 
& Dehaene, 2016).

The compressive nonlinearity in the number line has 
been interpreted as evidence for intrinsic logarithmic 
processes in numerosity processing (Dehaene et  al., 
2008), which become more linear with education and 
attention. This idea finds support from the fact that 
physiological estimates of bandwidth of numerosity 
receptors increase with numerosity (Nieder, 2016) and 
that errors in numerosity estimation often follow 
Weber’s law (Anobile et al., 2014; Dehaene, 2003; Ross, 
2003; Whalen et al., 1999). However, Anobile, Cicchini, 
and Burr (2012) suggested an alternative approach: that 
the nonlinearity was an example of regression to the 
mean (or central tendency), a universal phenomenon 
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Abstract
Mapping number to space is natural and spontaneous but often nonveridical, showing a clear compressive nonlinearity 
that is thought to reflect intrinsic logarithmic encoding of numerical values. We asked 78 adult participants to map dot 
arrays onto a number line across nine trials. Combining participant data, we confirmed that on the first trial, mapping 
was heavily compressed along the number line, but it became more linear across trials. Responses were well described 
by logarithmic compression but also by a parameter-free Bayesian model of central tendency, which quantitatively 
predicted the relationship between nonlinearity and number acuity. To experimentally test the Bayesian hypothesis, 
we asked 90 new participants to complete a color-line task in which they mapped noise-perturbed color patches to a 
“color line.” When there was more noise at the high end of the color line, the mapping was logarithmic, but it became 
exponential with noise at the low end. We conclude that the nonlinearity of both number and color mapping reflects 
contextual Bayesian inference processes rather than intrinsic logarithmic encoding.
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occurring for estimation of almost every quantity, 
including size, time, and number, in which responses 
gravitate toward the average of the response space 
(Hollingworth, 1910). Regression to the mean is well 
described within the Bayesian framework, where the 
mean is the prior, which combines with sensory data 
(the likelihood), following Bayes’s rule. The use of the 
mean as a prior has been shown to be an efficient 
strategy, reducing estimation error (Cicchini et al., 2012; 
Jazayeri & Shadlen, 2010).

Figure 1 shows how regression to the mean causes 
compressive nonlinearities in number mapping. Because 
the effect of the prior depends on the relative reliability 
(reciprocal variance) of the sensory data, it will have 
more of an effect at high than at low numbers because 
variance in numerosity judgments is known to increase 
with numerosity. For number-line tasks, the increase in 
root variance tends to follow a square-root relationship 
(Cicchini et al., 2014; Pomè et al., 2021), as modeled in 
this example. Figure 1a shows a hypothetical probability 
density function of the prior (black curve), together with 
probability density functions for the likelihoods for 
Numbers 6 and 24 (purple and red dashed curves, 
respectively). The broader distribution is influenced 
more than the narrow distribution when multiplied by 
the prior, resulting in more displacement at high than 
at low numbers, causing the compression observed in 
Figure 1b. However, this will occur only if observers are 
relatively imprecise; otherwise, all likelihoods will be 
narrow, relatively unaffected by the prior (gray curve).

Both logarithmic compression and Bayesian models 
provide excellent fits to the data (Anobile, Cicchini, & 
Burr, 2012), making them difficult to separate on that 
basis: Indeed, Figure 1b shows that they can be nearly 
identical. However, although a logarithmic transforma-
tion is a static nonlinearity, the Bayesian account sug-
gests that the effects should be dynamic because the 
prior may be recalculated on every trial. Previous work 
has shown that the effects are indeed dynamic (Cicchini 
et al., 2014), following the pattern of results of serial 
dependence (attraction to the previous stimulus) 
observed for many perceptual phenomena, such as ori-
entation and face perception (Cicchini & Burr, 2018; 
Liberman et al., 2014; Taubert et al., 2016). Serial effects 
were strongest for higher numbers and predicted a 
compressive behavior in the number-line task, without 
evoking the idea of intrinsic logarithmic coding.

Recently, however, Kim and Opfer (2018) seriously 
challenged this interpretation by demonstrating that 
even the very first trials of number-to-space mapping—
which clearly cannot be subject to serial dependence—
show strong compressive nonlinearities. Indeed, 
mapping of the first trial had a greater logarithmic com-
ponent than mapping of later trials. However, although 

Kim and Opfer’s study shows that serial dependence is 
not the only mechanism responsible for the compres-
sive response, it is not in itself proof of logarithmic 
encoding. Priors comprise a variety of information, not 
all necessarily calculated dynamically from previous 
trials. Before the experiment commences, observers see 
the line they are to map to, which itself may serve as a 
prior toward which responses are compressed (Anobile, 
Cicchini, & Burr, 2012).

If the Bayesian account is correct, then the strongest 
nonlinearity on the first trial should be accompanied 
by the poorest precision (see Fig. 1), so response scatter 
should correlate positively with nonlinearity magnitude. 
On the other hand, a static logarithmic nonlinearity should 
not affect mapping precision. We therefore repeated 
Kim and Opfer’s (2018) experiment showing that map-
ping precision steadily improves over trials and that the 
improvement quantitatively predicts the results. We also 
asked observers to map color onto space, manipulating 
stimuli to simulate the presumed noise gradient limiting 
numerosity judgments by adding external noise. When 
chromatic noise was added at the high end of the color 
line (simulating the higher response variance for large 
numbers), mapping followed a logarithmic-like function 
similar to number mapping. However, when noise was 

Statement of Relevance

To operate rapidly and efficiently, perceptual 
systems rely at least partially on prior experience 
to make best guesses from noisy and incomplete 
sensory input. This is efficient but can lead to the 
systematic distortions of reality that underlie many 
well-known visual illusions. One example is 
mapping number to space along a number line in 
which larger numbers appear to the right. 
Interestingly, this mapping is compressed: Larger 
numbers are not reported as much to the right as 
they should be. This distortion was previously 
thought to reflect logarithmic encoding of sensory 
input. Our research shows that, instead, it results 
from a tendency to map toward the a priori best 
guess, the center of the number line. The deviations 
look logarithmic because they are larger for 
difficult-to-judge high numbers than for low 
numbers, which “curves” the number line. This 
interpretation was supported by complementary 
experiments with color matching under similar 
conditions. The research is relevant to understanding 
dysfunction in mathematics learning, because 
responses on the number line are more distorted 
in students with poor math skills.
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added to the low end of the color line, the response 
curve flipped to become exponential. We demonstrated 
that all nonlinearities are plausibly explained within 
the Bayesian framework without resorting to innate 
logarithmic mapping.

Method

Participants

A total of 168 students participated in the study (18–33 
years old, M = 21.9 years; 128 female, 40 male). All were 
students at the School of Psychology of the University 
of Florence, and none had learning or neurological 
disorders. Seventy-eight participants performed the 
number-line task (19–33 years old, M = 22.1 years; 62 
female, 16 male), 45 performed the color-line task with 
left-to-right noise gradient (18–31 years old, M = 22.9 
years; 32 female, 13 male), and 45 performed the color-
line task with right-to-left noise gradient (18–28 years 
old, M = 20.7 years; 34 female, 11 male). All participants 

signed a consent form before being tested. Experimen-
tal procedures were approved by the local ethics com-
mittee (Comitato Etico Pediatrico Regionale, Azienda 
Ospedaliero–Universitaria Meyer, Florence, Italy) and 
were in line with the guidelines of the Declaration of 
Helsinki.

Sample size was determined following Kim and 
Opfer (2018), who employed 40 participants per 
study. We adapted this to our stimulus setup (nine 
numbers), which thus prescribed testing a minimum 
of 45 participants.

Materials and procedure

Stimuli were generated with MATLAB (Version 8.6; The 
MathWorks, Natick, MA) using Psychophysics Toolbox 
routines (Version 3.0.16; Brainard, 1997; Kleiner et al., 
2007) and were presented on 12.3-in. touch-screen tab-
lets (Microsoft Surface Pro; resolution = 2,736 × 1,824 
pixels, refresh rate = 60 Hz). The tablet was placed in 
a horizontal position resting on a table at a distance of 
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Fig. 1.  Regression to the mean within the Bayesian framework. The graph in (a) illustrates how the optimal combination of 
current evidence with prior knowledge is given by multiplication of the prior and likelihood distributions to yield the posterior 
Gaussian distribution. The prior is assumed to be centered in the middle of the number line and to have constant width (σ p = 9;  
gray curve). The likelihood is the sensory judgment, centered at the stimulus value, whose width is given by the root vari-
ance of the underlying noise distribution. Because response variance increases with numerosity, the distribution is narrower 
for lower numbers (purple dashed curve) than higher numbers (red dashed curve), and the posterior (shaded curves) will be 
more influenced by the prior for higher numbers (Equation 7). Nonlinear responses are shown (b) for a simulated observer at 
two levels of response precision. The green curves (and the curves in a) simulate an observer with low precision (dispersion 
index of Equation 2 set to 2), and the gray curves simulate an observer with high precision (dispersion index of 0.5). For low 
precision (high dispersion index), the central prior distorts the number line more at the high end than the low end, resulting 
in compression; for high precision, the distortion is less marked. Thin dashed lines show log-linear fits to the model predic-
tions (Equation 4), demonstrating that the behavior predicted by the log-linear model is very similar to that of the Bayesian 
observer. a.u. = arbitrary units.
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about 50 cm from the participant. Each trial started with 
a number line or color line (depending on condition), 
and the extreme stimuli were visible and remained on 
screen for the entire experiment (see Fig. 2).

For the number-line experiment, the instructions 
were as follows:

This is a number line with one element on the left 
extreme and 30 items on the right. When you 
touch the screen, a cloud of dots will appear 
within the box below the line, and your task is to 
indicate where the number of dots would fall on 
the number line. The other stimuli will follow suit.

For the color-line experiment, the instructions were 
as follows:

This is a color line with one colored disk on the 
left and one on the right. When you touch the 
screen, a colored disk will appear within the box 
below the line, and your task is to indicate where 
the color of the disk would fall on the color line. 
The other stimuli will follow suit.

At this stage, the participant would start the experi-
ment by tapping on the screen border. After 2 s, the 
first to-be-mapped stimulus appeared (lasting 1 s). Tri-
als following the first were automatically presented by 
the program after each response (1-s interstimulus 
interval). Using a finger on their dominant hand, par-
ticipants touched the location on a number line that 
they estimated would correspond with the number of 
dots in the stimulus (number-line experiment) or the 
location between two anchor colors on a “color line” 
that they estimated would correspond to the color of 
the stimulus. The touch triggered a sound signaling that 
the response was saved. There was no time pressure, 
and no feedback was given about accuracy. Participants 
were tested in a quiet room in a single session consist-
ing of nine trials (lasting less than 2 min).

The order of stimuli was determined by a balanced 
Latin square such that each stimulus set (cloud of dots 
or color patch) was uniformly sampled across partici-
pants. For the number-line task, each dot cloud was 
tested by at least eight participants, each of whom saw 
that cloud on at least one trial. For each of the two color-
line tasks, each stimulus was tested by five participants, 
each of whom saw that color patch on at least one trial.

Stimuli

The number line was 14-cm long, and there was one 
dot on the extreme left and a 30-dot cloud on the 
extreme right (see Fig. 2). The stimulus to be mapped 

a

b

c

d

Fig. 2.  Experimental paradigm and stimulus examples. In the number- 
line task (a), participants indicated the number of dots in a stimulus 
(the cloud of dots inside the red box) by touching the appropriate 
location on a number line. In the color-line task (b), participants 
indicated the color of a stimulus patch (inside the red box) by 
touching the appropriate location on a color line. Example stimuli 
for the first color-line task are shown in (c). Chromatic noise was 
added progressively from left (peach) to right (citron), interpolating 
linearly between the two extremes. Example stimuli for the second 
color-line task are shown in (d). Chromatic noise was added pro-
gressively from right (citron) to left (peach), again interpolating 
linearly.
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appeared 7 cm below the line within a 5.5-cm × 5.5-cm 
square frame. Stimuli were clouds of nonoverlapping 
0.2-cm-diameter dots, half of which were white and 
half black, displayed at 90% contrast on a gray back-
ground (luminance = 104 cd/m2). Dots were constrained 
to fall inside a virtual circle of 5 cm in diameter. Each 
participant was tested with nine unique stimulus sets, 
listed in Table 1.

The color line was analogous to the number line, 
except that the stimuli were colored circles 1.4 cm in 
diameter rather than dot clouds (see Fig. 2). The color 
line was delimited by two reference color patches: 
peach-orange on the left and bright citron-green on the 
right. We defined the colors from the hue, saturation, 
value (HSV) color space: peach = 0.1, 0.2, 0.8; citron = 
0.3, 0.2, 0.8. These values yielded stimuli with the fol-
lowing Commission Internationale de l’Éclairage (CIE) 
color-space coordinates—peach: x = 0.346, y = 0.359 
(luminance = 140 cd/m2); citron x = 0.316, y = 0.382 
(luminance = 143 cd/m2), measured on screen by a 
CS-100 Minolta photometer. The base hues of the patches 
were linearly interpolated between these two extremes 
with MATLAB’s implementation of HSV color space to 
produce nine unique stimuli (see hues in Table 1), cor-
responding to the same positions on the line as the 
number stimuli (see Column 2 in Table 1).

To emulate the noise gradient that presumably drives 
the increase in response variance with increases in 
numerosity, we perturbed the hues with pixelated 
Gaussian noise. We created small (21 × 21 pixels) 
images, defining the hue of each pixel by randomly 
drawing from a Gaussian distribution centered at the 
base hue with variable standard deviation (σhue). The 
images were then upscaled by bicubic interpolation to 
produce images of 210 × 210 pixels (effectively, low-
pass-filtered noise patterns with a cutoff of 5 cycles per 

degree) and multiplied by a two-dimensional circular 
vignette of 1.4 cm diameter having a sigmoidal roll-off 
of 0.4 cm (14%–86% opacity).

In the first condition, the noise amplitude increased 
almost linearly from peach to citron: σhue = 0 for peach 
patches to σhue = 0.1 for citron patches (see Table 1 for 
precise values). In the second condition, we applied the 
reverse gradient (noise highest for colors on the left, 
decreasing linearly toward the right; see Table 1). Satura-
tion (S in the HSV color space) of the stimuli was unaf-
fected by noise, but we included a small luminance noise 
to mask possible luminance cues that could interfere 
with hue judgments by adding Gaussian noise to the V 
coordinate of the HSV color space with σvalue of 0.05.

Analysis and curve fitting

We first combined data from individual participants to 
create an aggregate observer for every condition and 
trial number, from which we calculated the dispersion 
index. We first computed, for each numerosity i, the 
variance of the raw responses yi j,  (where i is the numer-
osity condition and j  the counter running through the 
aggregate observer at that numerosity and trial number), 
normalized by the stimulus numerosity xi :

	 σ 2

2

i
j

n
i j i j

i

y y

n
x=

−( )∑ , , / . 	 (1)

We then averaged these normalized variances across 
the nine numerosity stimuli and took their square root 
to obtain the dispersion index:

	 Dispersion index = Σi i

9
2

9σ / . 	 (2)

Table 1.  Stimulus Parameters for the Number-Line and Color-Line 
Experiments

Stimulus

Number line Color line Reverse color line

Number of dots Hue σhue Hue σhue

1   4 0.12667 0a 0.12667 0.08667
2   7 0.14667 0.02333 0.14667 0.07667
3 10 0.16667 0.03333 0.16667 0.06667
4 13 0.18667 0.04333 0.18667 0.05667
5 16 0.20667 0.05333 0.20667 0.04667
6 19 0.22667 0.06333 0.22667 0.03667
7 22 0.24667 0.07333 0.24667 0.02667
8 25 0.26667 0.08333 0.26667 0.01667
9 28 0.28667 0.09333 0.28667 0a

aThe extremes of the color line (0) deviated from linearity to emulate subitizing in 
numerosity judgments.
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For the color-line experiments, and as an alternative 
analysis to the numerosity data (see Fig. S1 in the Sup-
plemental Material available online), we quantified 
response scatter with Weber fractions, the normalized 
standard deviations for each numerosity i :

	 Weber fractioni

j

n
i j i j

i

y y

n
x=

−( )∑ , , / .

2

	 (3)

Then we averaged across all numerosities tested at 
a given trial.

For the number-line and first color-line tasks, we 
fitted average responses with a log-linear model that 
was created from an additive mixture of a linear and 
logarithmic function, as used by Anobile, Cicchini, and 
Burr (2012):

	 y a x K x= −( ) + ( )( )1 10λ λ . . log . 	 (4)

Each fitting curve was determined by two parame-
ters: λ, the relative contribution of the logarithmic and 
linear components, and a, a scaling factor that deter-
mines the overall height of the fit. K  is a constant set 
to X Xmax max/ log10 ( ) to balance the relative contribu-
tions of the linear and log components.

For the reverse color line, we fitted the growth func-
tion with a reverse log-linear equation, which was the 
mirror symmetrical version of Equation 4, given by 
flipping both x  and y . The function is anchored at the 
upper end (right) of the response line and free to vary 
at the lower end (left):

 y a x K x= − −( ) − + −( )( ) +1 30 30 3010λ λ( ) . . log .  (5)

Bayesian modeling

We modeled the behavior of an ideal observer who 
combines optimally prior knowledge with current sen-
sory evidence. In such a model, estimates are the com-
bination of the current observation (centered on the 
stimulus x) and prior knowledge (in this case, the cen-
ter of the response space Xmax /2):

	 y x w w Xp p= −( ) +1 2. / .max 	 (6)

For an optimal observer, the weight of the prior wp 
is proportional to the relative reliabilities ( )σ−2  of the 
two sources of information, likelihood and prior:

	 wp
P

P L

L

L P

=
+

=
+

−

− −

σ
σ σ

σ
σ σ

2

2 2

2

2 2
. 	 (7)

For any given σP , the behavior of the model varies 
with sensory variance σL

2 for each numerosity. For low 
variance (σL

2 ), the weight of the prior approaches zero, 
so the main contribution to the response will come 
from the current observations, leading to a near linear 
(and veridical) response curve (gray curve in Fig. 1b). 
For high variance, however, the prior becomes impor-
tant, leading to clear compressive nonlinearities (green 
curve in Fig. 1b). If variance scales with stimulus inten-
sity x (e.g., shot noise), the relative contribution of the 
current observation and prior will vary across the stimu-
lus range: For small values of x, variance is low, leading 
to little weighting of the prior, whereas for large values 
of x, variance increases, leading to higher weighting of 
the prior and a departure from linearity toward the 
mean.

In our fitting approach, response variance was deter-
mined experimentally; the only free parameter for the 
fit was σP , the width of the prior. We assumed that this 
did not change over time and simultaneously fitted the 
nine trials with the same value of σP.

Results

Number-line experiment

We first replicated Kim and Opfer’s (2018) study, ask-
ing 78 students to make nine consecutive judgments 
about the number of dots in a stimulus set and to 
indicate those judgments on a number line (see Fig. 
2). The results of the first, fifth, and ninth judgments 
for Kim and Opfer’s and our data sets are shown in 
Figure 3. The trend was very similar. The first judg-
ments (see Figs. 3a and 3d) showed the greatest non-
linearity, and then the mapping became progressively 
more linear. The orange curves show the best log-
linear fit to the data (Equation 4; also see Table 2 for 
values of λ). In both studies, the logarithmic compo-
nent λ decreased steadily over trials, from 0.71 on Trial 
1 to 0.17 on Trial 9 in our data and from 0.72 to 0.25 
in Kim and Opfer’s data (see Table 1 and ordinates of 
Figs. 3h and 3i).

The two strong predictions of the Bayesian model 
are that response precision should be poorest on the 
first trial and then progressively improve and that the 
imprecision should correlate positively with the mag-
nitude of nonlinearity. We estimated response precision 
as the square root of the average dispersion index of 
the responses, defined as the variance at each numeros-
ity normalized by the numerosity (see Method for 
details and Discussion for rationale). Figure 3g plots 
this precision index (higher numbers imply greater 
imprecision) as a function of trial number for the  
two experiments. In both cases, the index was high in 
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of the log-linear model (Equation 4) are shown in orange, and predictions of the Bayesian observer based on a measured 
index of dispersion are shown in green. Indices of dispersion (g) are shown as a function of trial number, separately for 
Kim and Opfer’s data set and our data set. Continuous curves are fits of an exponential decay function, ln( )y A kx= − .  
In (h) and (i), the correlation between response curvatures (as indexed by the log component of Equation 4) and indices 
of dispersion across trials is shown for Kim and Opfer’s data set and our data set, respectively. In (h) and (i), thick lines 
indicate best-fitting linear regressions, and numerical values indicate trial numbers.
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the first trial and then steadily decreased over time, fol-
lowing an exponential decay (exponential fit: R2 = .49, 
p < .001 and R2 = .53, p < .001 for Kim and Opfer’s data 
set and our data set, respectively). Figures 3h and 3i plot 
the dispersion index against the logarithmic factor λ—
the index of nonlinearity—for each of the nine estimates, 
separately for the two experiments. The two measures 
were strongly correlated and highly significant (r = .92, 
p < .001 for Kim and Opfer’s data set; r = .85, p = .002 
for our data set; ps one tailed).

The poor precision observed on the first trial predicts 
that the prior will have a relatively greater effect, lead-
ing to the nonlinearity. This qualitative relationship is 
clear in Figures 3h and 3i, but can the increase quan-
titatively predict the nonlinearity? The green curves in 
Figures 3a to 3f show the Bayesian predictions, obtained 
by combining the prior with the data (likelihoods in 
the Bayesian model) and weighting the contribution of 
the prior by the relative reliabilities (inverse variances). 
To smooth the variance estimates, we assumed that 
response variance increased linearly with numerosity 
(Equation 1), leading to a constant index of dispersion 
(Equation 2). The only parameter free to vary was the 
width of the prior, assumed to be positioned in the 
center of the number line and to remain constant for 
all trials (one free parameter for nine fits). It is clear 
that this Bayesian model captured the data well, show-
ing the same compressive nonlinearity as the logarith-
mic fits. The fits are also quantitatively good: Average 
R2 was .80 and .91, respectively, for Kim and Opfer’s 

data and our data, compared with .90 and .94, respec-
tively, for the log-linear fit (see Table 2). Considering 
that the nine log-linear fits were independent, each with 
two free parameters, whereas the Bayesian fit had only 
one parameter for all nine fits, the Bayesian fits are 
respectable, even if not quite as good. More impor-
tantly, the green curves were derived from an efficiency-
based model rather than merely fitting the data. To 
replicate other models in the literature, we also ran Kim 
and Opfer’s dynamic mixed linear logarithmic model, 
in which the mixture of linear and log components is 
updated from trial to trial, depending on the stimulus 
presented. This model has fewer parameters than the 
nine independent fits and yielded fits with an average 
R2 of .90 and .91 for the two data sets (see Table 2).

In these fits, we assumed that variance was directly 
related to numerosity, as has been reported, consistent 
with variability determined by shot noise or Poisson 
noise, typical for distributions of discrete events, such 
as photons (Schottky, 1918). However, it is important 
to stress that this assumption was not essential for the 
model. Other assumptions, including Weber’s law (con-
stant coefficient of variability), led to similarly good 
predictions, as we show in Figure S1 and Table 2.

Color-line experiments

The previous sections showed strong correlational evi-
dence for the Bayesian model: Precision was poorest on 
the first trial and then steadily improved. The precision  

Table 2.  Summary Statistics of Aggregate Observers and Fit Parameters for All 
Experiments

Trial

Current 
experiment: 
number linea

Kim &  
Opfer (2018): 
number lineb Color Line 1c Color Line 2d

Dispersion λ Dispersion λ WF λ WF λ

1 1.80 0.72 1.46 0.71 0.58 0.98 0.91 0.37
2 1.45 0.39 1.62 0.82 0.86 0.90 1.24 0.73
3 1.46 0.37 1.40 0.41 0.43 0.33 0.73 0.06
4 1.28 0.09 1.30 0.32 0.31 0.17 0.35 −0.09
5 1.31 0.01 1.40 0.35 0.48 0.34 0.80 0.43
6 1.45 0.16 1.26 0.18 0.29 0.14 0.39 0.36
7 1.19 0.07 0.96 0.12 0.28 0.19 0.33 0.01
8 1.39 0.15 1.29 0.18 0.37 0.15 0.42 0.06
9 1.44 0.25 1.01 0.18 0.29 0.06 0.48 0.12

Note: WF = Weber fraction.
aLog-linear fit: R2 = .95; Bayesian shot noise: R2 = .91; Bayesian Weber’s law: R2 = .90; dynamic mixed 
linear logarithmic model: R2 = .91. bLog-linear fit: R2 = .89; Bayesian shot noise: R2 = .80; Bayesian 
Weber’s law: R2 = .83; dynamic mixed linear logarithmic model: R2 = .89. cLog-linear fit: R2 = .96; 
Bayesian shot noise: R2 = .85; Bayesian Weber’s law: R2 = .84; dynamic mixed linear logarithmic 
model: R2 = .85. dLog-linear fit: R2 = .96; Bayesian shot noise: R2 = .70; Bayesian Weber’s law: R2 = .75; 
dynamic mixed linear logarithmic model: R2 = .83.
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indices were good predictors of the results of all nine 
trials without additional free parameters. However, 
although the correlational evidence was strong, the 
strongest stress test for any theory is whether an experi-
mental manipulation can cause a predicted outcome. 
Because almost all psychophysical judgments are sub-
ject to regression to the mean (Hollingworth, 1910), it 
should in theory be possible to obtain compressive 
logarithmic-like mapping with other nonnumerical 
judgments, such as color-to-space mapping. All that is 
needed for response compression, besides the mean 
acting as a prior, is a gradient of thresholds, so one end 
of the mapped attribute is more susceptible to the prior 
and therefore more attracted to the mean.

To test this possibility, we designed a task in which 
observers mapped a colored patch onto a color line, 
which varied smoothly from peach-orange at left to 
citron-green at right (see Fig. 2c). The color patches 
were perturbed by chromatic noise, which increased 
progressively from no noise for peach patches to maxi-
mum noise for citron patches (for details, see the 
Method section). The idea of this manipulation was  
to progressively increase thresholds, with a Weber-like 
dependence on stimulus magnitude simulating the 
presumed internal noise underlying numerosity judg-
ments (which increases monotonically with numeros-
ity). This in turn should cause more Bayesian regression 
to the mean for mappings on the right end of the color 
line, thereby creating a compressive, logarithmic-like 
nonlinearity.

The results are shown in Figures 4a to 4c. The map-
ping followed the same pattern as the number-line 
mapping. The first trial had a very strong logarithmic 
component ( λ = 0.98), which gradually decreased over 
the next nine trials (down to λ = 0.06 at the ninth trial). 
As we observed in the previous experiments, response 
variability was also highest on the first trial and then 
decreased exponentially (R2 = .39, p = .001; see Fig. 
4g). Again, the variability (indexed as a Weber fraction) 
correlated significantly with the logarithmic component 
(r = .87, p < .001, one tailed; see Fig. 4h). Furthermore, 
these indices directly predicted the compressive non-
linearity: With only one degree of freedom for all nine 
fits (the width of the prior), the theory-based model 
explained 85% of the variance, compared with 87% 
explained by the descriptive log-linear fit, which had 
18 free parameters and was not theoretically motivated 
(see Table 2).

Although it has been suggested that number coding 
may follow a logarithmic law, no such suggestion has 
ever been applied to color, usually described as being 
fairly linear around the circle (Wyszecki & Stiles, 1982). 
It therefore seems unlikely that the compression reflects 
an intrinsic static nonlinearity in color coding but is a 

consequence of the asymmetric added noise. To test 
this hypothesis further, we repeated the experiment 
with an inverted noise gradient, maximal at the peach 
end and decreasing progressively to citron (see Fig. 
2d). Under these conditions, the nonlinearity in the 
mapping became expansive rather than compressive. 
We fitted the data with a flipped log-linear function 
anchored at the high end (Equation 5), where the non-
linear component was captured by the log component 
(λ) and was free to vary. As is obvious by the fits 
(orange curves), there was a strong accelerating com-
ponent in the first trials, which gradually decreased 
over trials. Again, the increase in reliability over trials 
was well described by exponential decay of Weber 
fractions (R2 = .16, p = .007; see Fig. 4g), and dispersion 
at each trial correlated significantly with the nonlinear, 
logarithmic component of the fit (r = .87, p = .001, one 
tailed; see Fig. 4i). The green curves in Figures 4d to 
4f show the parameter-free Bayesian model, which fit-
ted the data well, explaining 70% of the variance (with 
nine inverted log-linear fits explaining 86%).

First-trial responses on number-line 
task across experiments

An important prediction of our approach is that nonlin-
ear response patterns arise whenever either the partici-
pant or the condition is accompanied by a high noise 
level, whereas more linear patterns emerge when 
observers are precise and conditions not so taxing.

To address these predictions, we examined two data 
sets provided by Kim and Opfer (2018), which are the 
only ones available that employed a balanced Latin 
square design. One is their Study 4, which examined 
number-line mapping of nonsymbolic numbers in 
young children. As already reported in the literature, a 
strong nonlinearity emerges at a young age (5–6 years). 
These data were previously fitted with the log-linear 
model, which became saturated at λ of 1. To better 
quantify the fit, we relaxed the boundary conditions of 
the log-linear fit and reported a logarithmic component 
λ equal to 1.85. Indeed, the curve was nearly flat (R2 
for the logarithmic fit was only .14), implying that it 
predicts the data little better than the mean (see Fig. 
5a). Nevertheless, if our model is correct, the stronger 
nonlinearity in children should be explained by high 
response variability in children. The root index of dis-
persion for the children’s aggregate data on the first 
trial was 2.23 (see blue square in Fig. 5d), compared 
with 1.80 for the adults in their study.

The other data set is also from Study 4 by Kim and 
Opfer (2018), in which the numerosity to be mapped 
was presented as Arabic numbers (see Figs. 5b and 5c). 
In this case, even the first trial displayed very little 
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logarithmic compression (0.34 for the children group 
and −0.05 for the adult group; see blue and black stars, 
respectively, in Fig. 5d). In line with our hypothesis, 
this was also accompanied by a reduction of the root 
index of dispersion of 1.48 and 0.64, respectively, for 
the two groups.

The relationship between the curvature of responses 
(as indexed by λ) and sensory resolution was a general 
characteristic of the data. Figure 5d shows the data for 
the various experiments by Kim and Opfer (2018), 

together with that of our studies. Clearly, the conditions 
with the highest dispersion indices also had the highest 
logarithmic compression (r = .66, p = .018).

Discussion

We tested the notion that the compressive nonlinearities 
in number-to-space mapping result from efficient 
Bayesian strategies rather than from innate logarithmic 
coding. We first replicated the study by Kim and Opfer 
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(2018), finding that there were strong compressive non-
linearities on the first trials of each participant but that 
the data became progressively more linear over trials. 
As predicted, response precision was poorest on the 
first trials and then steadily improved, paralleling the 
linearization of responses. The magnitude of the preci-
sion indices quantitatively predicted the nonlinearities 
of both our and Kim and Opfer’s results, with only one 
degree of freedom for the nine fits (the prior width). 
We also predicted and observed lower precision indices 
in children’s data and higher precision for symbolic 
numbers. Interestingly, our conclusions fit both our 
own data, collected from college students in Italy, and 
those of Kim and Opfer, collected from adults and 
young children in the United States, equally well. This 
gives confidence that the phenomena under study are 
a general trait of human behavior and may generalize 
beyond the present research.

Kim and Opfer (2018) explained the progressive lin-
earization of responses across trials, assuming a specific 
trial-by-trial update of the mapping prompted by how 
similar the previous and current stimuli were to the end 
point, within their dynamic mixed linear logarithmic 
model. Goodness of fits with this model (which has 
more parameters and includes a scaling factor) were 
similar to those of the Bayesian fits. However, our 
model provides a much simpler explanation, suggesting 
that linearization occurs because of the spontaneous 
improvement of precision with training. However, how 
the central and sequential priors combine is still an 
open question for further studies.

The strongest evidence for Bayesian contextual effects 
rather than logarithmic encoding in number-line mapping 
was the color-line mapping experiments. Color represen-
tation is best conceived as circular (Shevell, 2003), but a 
portion of this space can be represented as a line to 
which participants can reliably map specific colors. When 
color noise was added to the samples to be mapped, 
participants mapped color to space in a logarithmic fash-
ion. However, for noise increasing in the opposite direc-
tion, the mapping became exponential. It is clearly 
unreasonable to suggest that color hues are encoded 
logarithmically, in any particular direction, but even more 
so that the encoding could shift from logarithmic to expo-
nential when noise is selectively added. Efficient Bayesian 
contextual processes provide a far more parsimonious 
explanation for both color-line and number-line map-
ping. One difference between the number-line and color-
line experiments is that for numerosity, the noise driving 
the decrease in precision with numerosity was internal, 
whereas for the color-line experiments, the noise was 
external and visible, and internal noise was invisible. But 
despite this difference, the external, visible noise created 
compressive nonlinearity, as did internal noise on numer-
osity estimation: Both forms of noise increased response 

variance to cause the compressive nonlinearity, as pre-
dicted both qualitatively and quantitatively.

When reliability (inverse variance) is low, other sig-
nals such as a central prior become relatively impor-
tant, causing the well-known regression to the mean 
(Hollingworth, 1910). If the nonlinear color mapping 
results from efficient Bayesian processes, there is little 
need to invent arbitrary mechanisms such as logarith-
mic coding for number processing. When participants 
are most uncertain, such as on their first trial (when 
they have the least experience in the task), they weight 
their judgments heavily with prior information, includ-
ing the mean position they are mapping to.

Most previous literature has assumed that the central 
tendency prior is derived from statistical regularities of 
the environment (Adams et al., 2004; Cicchini et al., 2012; 
Jazayeri & Shadlen, 2010) during an experimental session 
or from daily experience. These are very rapid processes 
that can recalibrate responses in as little as three trials 
(Berniker et al., 2010) but cannot explain context effects 
on the very first trial. However, our results show that 
they can and do exist, at least in experiments such as 
number-line and color-line mapping, in which the 
response space is on continuous display. The system is 
clearly flexible and efficient, incorporating information 
from all possible sources. Our results suggest that in the 
absence of statistics of the perceptual past, participants 
derive a prior from the response space itself, which, on 
average, will correspond to the center of the space. In 
this respect, our model is surprisingly successful because 
the prior for the first trial is not a free parameter but is 
assumed to be central.

The notion that perceptual systems logarithmically 
encode physical qualities goes back 160 years, to the 
founder of the field of psychophysics, Gustav Fechner 
(1860). The idea neatly explained many common psy-
chophysical phenomena, including the Weber-Fechner 
law (whose integral is logarithmic). This simple and com-
pelling idea dominated psychophysics textbooks for a 
century before being challenged by Stevens (1957), who 
showed that observer estimates of stimulus intensity did 
not typically follow a logarithmic function but rather a 
power function, seriously questioning logarithmic encod-
ing as a general law. More recent research explains non-
linearities in sensory transduction as the action of 
dynamic gain control and normalization mechanisms 
(Carandini & Heeger, 2011; Shapley & Enroth-Cugell, 
1984), which optimize systems to prevailing levels of 
luminance, contrast, and so on and predict compressive 
nonlinearities in most sensory mechanisms.

Many modern approaches to number cognition treat 
it as a perceptual system, variously termed “the number 
sense” (Dehaene, 2011) or a “primary visual property” 
(Burr & Ross, 2008, p. 425). As with all other perceptual 
systems, number systems adapt dynamically to the 
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prevailing level of numerosity (Burr & Ross, 2008), a 
clear signature of the gain-control processes that 
explain the Weber-like behavior of discrimination 
thresholds (Carandini & Heeger, 2011). It is therefore 
highly probable that numerosity is encoded like other 
dynamically adaptable perceptual systems, rather than 
performing static logarithmic transformations. Indeed, 
as Gallistel and Gelman (1992) have pointed out, loga-
rithmic encoding would be problematic for many rea-
sons, including the fact that it would hinder addition, 
fundamental for dealing with numbers.

Early support for logarithmic encoding of numbers 
was that numerosity discrimination shows scalar vari-
ability, the tendency to follow the Weber-Fechner law 
(Dehaene, 2003; Ross, 2003; Whalen et al., 1999), and 
that the bandwidths of numerosity-tuned neurones scale 
with numerosity (Nieder, 2016). However, Weber’s law 
is not always observed: At low “subitizing” numerosities, 
the increase is steeper than predicted by Weber’s law 
(Dehaene, 2003), and at high numerosities, the increase 
is shallower, closer to the square root (Anobile et al., 
2014). In number-line tasks, precision follows a square 
root rather than Weber’s law (Cicchini et al., 2014; Pomè 
et al., 2021). A square-root law is the signature of shot 
noise or Poisson noise, the intrinsic noisiness of the 
stimulus, of which photon noise is a clear example 
(Schottky, 1918). The square-root law is common in 
psychophysics, including the de Vries-Rose law in lumi-
nance discrimination (Rose, 1948), usually taken as a 
signature that discrimination is limited by the noisiness 
of the stimulus rather than by special encoding mecha-
nisms. Similarly, in our model, shot noise is determined 
by the stimulus rather than an encoding strategy. How-
ever, the square-root law is not essential for the model: 
Figure S1 shows that scalar variability (Weber’s law) will 
also produce the same result, as will any positive depen-
dence on numerosity.

We conclude that the compression of the number line 
results from efficient Bayesian-like processes that take 
advantage of prior information to reduce error. Although 
number-to-space mapping can be well fitted by log-
linear functions, this does not in itself prove the exis-
tence of intrinsic logarithmic encoding mechanisms for 
numerosity. The compressive nonlinearity more likely 
reflects mechanisms evolved to exploit contextual effects 
to maximize perceptual efficiency. However, it is impor-
tant to emphasize that this study does not minimize the 
usefulness of the number line as a diagnostic test for 
numerical understanding. Indeed, our results show that 
Bayesian processes account for the higher nonlinearities 
in mapping in children. Whatever the mechanisms 
behind the nonlinearity, the number-line task remains 
an informative diagnostic tool (Anobile et  al., 2019; 
Berteletti et al., 2010; Geary et al., 2008). However, what 
our research shows is that it is also vital to elucidate the 

mechanisms that lead to deviations from perfectly linear 
behavior to better interpret the results of this simple and 
widespread test of basic numerical skills.
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