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Continuous tracking is a newly developed technique that
allows fast and efficient data acquisition by asking
participants to “track” a stimulus varying in some
property (usually position in space). Tracking is a
promising paradigm for the investigation of dynamic
features of perception and could be particularly well
suited for testing ecologically relevant situations difficult
to study with classical psychophysical paradigms. The
high rate of data collection may be useful in studies on
clinical populations and children, who are unable to
undergo long testing sessions. In this study, we designed
tracking experiments with two novel stimulus features,
numerosity and size, proving the feasibility of the
technique outside standard object tracking. We went on
to develop an ideal observer model that characterizes
the results in terms of efficiency of conversion of
stimulus strength into responses, and identification of
early and late noise sources. Our ideal observer closely
modeled results from human participants, providing a
generalized framework for the interpretation of tracking
data. The proposed model allows to use the tracking
paradigm in various perceptual domains, and to study
the divergence of human participants from ideal
behavior.

Introduction

Experiments in psychophysics are generally time-
demanding and mostly concerned with estimation of
perceptual thresholds from discrete trial presentations.
These methods can be difficult to apply in ecologically
relevant situations (Huk, Bonnen, & He, 2018), which

are important to address neural processes underlying
behavior, and for understanding inferences from image
statistics for natural perceptual function (Geisler &
Ringach, 2009; Kersten, Mamassian, & Yuille, 2004).
Continuous paradigms may provide an important tool
for the investigation of behavior in real-life situations
and to assess dynamic features of the perceptual
system under study. One such example is “continuous
tracking,” where participants are asked to track a
target with a cursor, and cross-correlogram analysis
between responses and stimuli captures participants’
ability to localize a target. Performance improves with
the signal-to-noise ratio (SNR) of the stimulus (Bhat,
Cicchini, & Burr, 2018; Bonnen, Burge, Yates, Pillow,
& Cormack, 2015; Bonnen, Huk, & Cormack, 2017;
Li, Sweet, & Stone, 2005; Mulligan, 2002; Mulligan,
Stevenson, & Cormack, 2013), consistent with the
idea that if a stimulus is sufficiently perceivable for
participants to answer psychophysical questions about
it, then they can accurately point to its position. The
strength of correlation between target position and
its tracking by participants is a predictor of standard
psychophysical thresholds (Bonnen et al., 2015). More
importantly, this technique allows for the collection of
a large amount of data in a short time.

Data from tracking experiments, however, can be
difficult to interpret. Typically, cross correlograms
spread over long time windows, and have a temporal
lag of a few hundred milliseconds. This means that
the target and response positions cannot be directly
compared without introducing spurious error estimates
due to the lagged response. Such lag cannot be merely
included as a temporal shift, because the spread of the
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cross-correlogram through time suggests that subjects
integrate across various frames. These limitations need
to be addressed to make tracking a reliable technique in
perceptual studies.

In this work, we address quantitatively the
question of how much of the tracking performance
is due to sensory uncertainty or to noise occurring
in motor systems. We did so by measuring two
perceptual attributes that have not been addressed
with tracking experiments to date, yet have a long
history of psychophysical studies – numerosity and size.
Numerosity perception refers to the ability to estimate
the number of objects in a scene without serial counting,
using what has been termed the “approximate number
system” (ANS; Dehaene, 2011). This ability is shared
with many animal species (Nieder, 2019), indicating that
it may give an ecological and evolutionary advantage,
such as choosing zones with more food, or quickly
determining which group of competitors is more
numerous. Many works have investigated this system
using the many paradigms offered by psychophysical
research, which have highlighted important features
of this neural system, such as its susceptibility to
adaptation (Arrighi, Togoli, & Burr, 2014; Burr &
Ross, 2008; Castaldi, Aagten-Murphy, Tosetti, Burr,
& Morrone, 2016), its partial independency from
continuous magnitudes (Anobile, Cicchini, & Burr,
2014, Anobile, Cicchini, & Burr, 2016; Cicchini,
Anobile, & Burr, 2016; Ross & Burr, 2010), and that it
acts on segmented objects (Anobile, Cicchini, Pomè, &
Burr, 2017; Franconeri, Bemis, & Alvarez, 2009; He,
Zhang, Zhou, & Chen, 2009) rather than on texture.
Size is also a primary perceptual attribute that guides
human and animal behavior. Studies on perception
of object size have shown that it has a topographical
representation in the parietal cortex (Harvey, Fracasso,
Petridou, & Dumoulin, 2015), whose perceived
magnitude modulates neural activity in the primary
visual cortex (Pooresmaeili, Arrighi, Biagi, & Morrone,
2013). It is susceptible to serial dependence (Kristensen,
Fracasso, Dumoulin, Almeida, & Harvey, 2021),
adaptation, independently from spatial frequency
(Baker & Meese, 2012), and attention (Tonelli,
Pooresmaeili, & Arrighi, 2020). The two perceptual
features, which share a Weber-law behavior but arise
from independent perceptual mechanisms (Anobile et
al., 2014; Ganel, Chajut, & Algom, 2008), allowed us to
design equivalent experimental paradigms relying on
different perceptual systems.

Participants were presented with a cloud of dots
changing in numerosity or area (in separate sessions)
and asked to compensate for the changes with mouse
movements, to keep the numerosity or area of the
stimulus constant. This annulling paradigm provides
dynamic information on participants’ responses, which
can be extracted from the cross-correlogram: its peak,
temporal lag, and width (Bhat et al., 2018; Bonnen et

al., 2015; Bonnen et al., 2017; Mulligan, 2002; Mulligan
et al., 2013). In addition, it was possible to measure the
effect of increased visibility of changes in the stimuli
as the increase in the square root of the explained
variance between participants’ responses and those
predicted by a linear virtual observer, and we labeled
this measure efficiency (Barlow, 1962; Pelli, 1991a; Pelli
& Farell, 1999). In other words, our design allowed us
to compare participants’ performances to those of a
noiseless observer, which shares the participants’ motor
response to a single change in the stimulus, and to
measure the overall visibility as the correlation between
the real and ideal response. This provides evidence for
the existence of a linearly scaling range of performance,
where participants’ behavior in tracking can be better
understood in terms of signal strength.

In order to test whether deviations from ideal
behavior arise from random fluctuations in mouse
movements or from how stimuli are converted into
responses, we designed a Psychometric Observer that
combines dynamic information from the annulling
task and discrimination thresholds estimated from
a standard two-alternative forced choice (2AFC)
experiment. The result is a virtual observer that
responds probabilistically to incoming changes in the
stimulus, with a probability determined by participants’
perceptual sensitivity. Importantly, our Psychometric
Observer closely replicated the improvements of
performance with stimulus visibility, indicating how
visual characteristics of the stimuli may affect human
performance in the tested range. This suggests that
results obtained through continuous tracking are
mostly related to how information is processed by the
perceptual system, independently from the perceptual
feature under study, making it a valuable technique to
apply to various perceptual domains, yielding temporal
and dynamic information in a fast and spontaneous
way.

Methods

Participants

Nine voluntary participants (ages 24–35 years,
5 women) were recruited. All had normal or corrected-
to-normal vision. All participants had prior experience
in psychophysical experiments, only one of them had
prior knowledge about the details of the experiment
(one of the authors). All were right-handed and
used their right hand for tracking. Experimental
procedures are in line with the Declaration of Helsinki
and were approved by the regional ethics committee
(Comitato Etico Pediatrico Regionale — Azienda
Ospedaliero-Universitaria Meyer — Firenze, FI).
Written informed consent was obtained from each
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participant, which included consent to process and
preserve the data and publish them in anonymous form.

Setup

Stimuli were displayed on a 70 × 40 cm Display++
LCD Monitor (Cambridge Research Systems,
Rochester, UK) with resolution = 1920 × 1080 pixels
and refresh rate = 120 Hz. A regular USB mouse was
used to collect responses in the tracking experiment,
and a regular USB keyboard in the 2AFC experiment.
In all experiments, participants were placed at a 57 cm
distance from the screen.

Stimuli were generated by the Psychophysics Toolbox
(Brainard, 1997; Kleiner, Brainard, Pelli, & Ingling,
2007; Pelli, 1997). The target was a cloud of dots
of random sizes (from 0.3 degrees to 0.5 degrees
diameter) on a uniform gray background. Each dot
had a maximum presentation time (lifetime) of 100
ms. A limited lifetime paradigm was adopted to avoid
participants performing the task by ignoring the dots
always present on the screen and responding merely
to the appearing or disappearing of a few dots. In the
numerosity tracking task, the number of dots forming
the cloud changed. The starting patch contained 20 dots
arranged in a cloud of 200 cm2 (radius approximately 8
degrees). Numerosity of the patch was free to change
from numerosity 2 to 100. When pooled across all trials,
the resulting numerosities were Gamma distributed,
with k = 2.2, θ = 23.4. The area task was analogous
to the numerosity task, except that the area (convex
hull) of the cloud of dots was varied, whereas the
numerosity was kept constant. Stimulus size was free to
vary between approximately 35 cm2 and approximately
800 cm2 (radius between approximately 3 degrees and
approximately 16 degrees). The sizes of the patch of
dots presented on screen were also Gamma distributed,
with k = 2.0 and θ = 203.0 cm2.

Tracking

The numerosity of the stimulus changed at random
time intervals and they followed a Gamma distribution
with k = 1.1 and θ = 0.228 seconds. Five different
experimental conditions with increasing relative
changes were tested. In each condition, changes had
two possible strength values in a ratio 1 to 2.5: “weak”
were 0.050, 0.075, 0.100, 0.150, and 0.200 octaves,
and “strong” 0.125, 0.187, 0.250, 0.375, and 0.500
octaves. We will refer to each condition with a label
corresponding to the average change undergone by the
stimulus in that condition. Condition properties are
summarized in Table 1. Movie 1 gives a demonstration
of the stimuli in absence of mouse movements, and

Weak Strong Average
Condition change change change
label (octaves) (octaves) (octaves)

1 0.050 0.125 0.087
2 0.075 0.187 0.131
3 0.100 0.250 0.175
4 0.150 0.375 0.262
5 0.200 0.500 0.350

Table 1. Stimulus changes in each condition. Stimuli changed at
random instants, with equally distributed positive and negative
changes, and equally distributed weak and strong changes.
Changes are expressed as the ratio between the new stimulus
value (numerosity or area) and the previous, expressed in
octaves. Each condition is identified by the average between
these values or by its label.

movie 2 shows an example of the effect of mouse
movements on stimuli.

Each of the five conditions comprised 18 blocks of
20 seconds each (6 minutes). The number of changes
in the positive and negative directions was equal in
every trial. The task of participants was to move the
mouse leftward or rightward to counteract stimulus
changes: rightward movements increased numerosity,
whereas leftward movements decreased it. Movements
of the mouse were rescaled to compensate for the
greater changes undergone by the stimulus in different
conditions, so that participants would perform the
task with the same motions. This was done to prevent
the enhancement of motor errors, which increase in
variance with larger movements (Fitts, 1954; Harris &
Wolpert, 1998). The same holds for the area task.

Alternative forced choice

To measure psychophysical sensitivity within a
standard 2AFC framework we ran a 2AFC experiment
slightly differently from the standard implementation:
trials were made from clips from the tracking
experiment, with dots of limited lifetime, each present
on the screen for a maximum of 100 ms, as in the
tracking experiment. In separate experiments, the cloud
of dots changed in either area or numerosity. Each
observer was presented with 200 clips, each 1000 ms
long: for the first 500 ms numerosity (or area) was
constant (the reference), for the second 500 ms either
lower or higher (the probe). Participants indicated by
keypress whether the numerosity appeared to increase
or decrease. The color of the dots changed from blue
to yellow to flag the two intervals. Participants were
allowed 2 seconds to respond before the presentation of
the new clip. Each clip showed changes ranging from
−1 to 0.6 octaves (10 to 30 dots). The area task had the
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same architecture, also showing changes ranging from
−1 to 0.6 octaves, with the probe comprising 20 dots
of approximately 200 cm2 (approximately 8 degrees in
radius). These differences from the standard 2AFC
paradigm were necessary to have a realistic estimate of
participants’ discrimination thresholds in the tracking
conditions.

Data analysis

Data analysis was implemented on Matlab 2019a
(MathWorks, Natick, MA, USA) and on JASP (version
0.14.1, JASP Team, 2020; jasp-stats.org).

Tracking

We measured the normalized cross-correlation
between changes in mouse position (output) and
computer-driven changes in the stimuli (input).
Because of the annulling strategy, mouse movements
were reversed to match the direction of changes
on screen to yield positive rather than negative
correlations. The maximum correlation value (peak),
the full-width-half-max (width), and delay at maximum
value (lag) are taken as parameters for participants’
performance in each condition.

Psychophysics

Data from each participant in the 2AFC tasks were
analyzed separately. For each task (area or numerosity),
occurrence of reporting an increase in the stimulus
was plotted as a function of changes in the stimulus,
expressed in octaves, and fitted with a cumulative
Gaussian distribution. The width of the underlying
Gaussian divided by its mean gives the participant’s
Weber Fraction (WF).

Efficiency

The cross-correlation between participant response
and input stimuli in the tracking tasks was used to
estimate the transfer function kernel from input stimuli
to output response (see Appendix A for details).
This was used to generate an ideal response in each
condition, which was interpreted as an ideal observer
responding to every change in the stimulus, limited by
the motor implementation of the participant. In this
sense, comparison of human and ideal performance
yielded an estimate of the total amount of signal
converted into a response by the subject. We termed
this measure of the explained variance between the two

time-series efficiency (Barlow, 1962; Pelli, 1991a; Pelli &
Farell, 1999). Efficiency was measured as the correlation
between the real and ideal response, which is an estimate
of the explained variance that preserves the information
on the timing and direction of stimulus variation (see
Appendix B). The kernel was computed from the whole
dataset for each participant (see Discussion below).
We also implemented a cross-validation analysis of
efficiency, where the kernel was computed using half
the data (3 minutes per condition, for a total of 15
minutes), and results were compared to the other half
of the data. In addition, a bootstrap analysis was
implemented combining different trial blocks to build
several different 1-minute-long sessions. The session
length was chosen as it provided the best trade-off
between the number of possible combinations without
repetition and statistical significance of the session. We
then evaluated the average sensitivity index (d’) across
different conditions for efficiency and peak of the
cross-correlogram, which is generally the best predictor
for the quality of participants’ responses among the
cross-correlogram parameters (Bhat et al., 2018).

Psychometric observer

We implemented a Psychometric Observer to relate
tracking and standard psychophysics, and to address
possible sources of noise explaining the discrepancies
between real tracking and the Psychometric Observer’s
tracking. The Psychometric Observer is an ideal
observer that first interprets incoming sensory
information probabilistically and then implements
responses via the participant’s kernel. The probabilistic
behavior in the first front-end stage of processing has
been inferred from the subjective responses in the
2AFC discrimination task: the psychometric curve in
this task reveals how much a given stimulus change is
likely to be interpreted as an increase or a decrease in
the target feature, representing the best possible guess
of the observer under conditions of no time pressure.
Performance of this Psychometric Observer can thus
be used as a reference for participants’ behavior, as
it incorporates the front-end stage of early sensory
processing and constitutes a reasonable benchmark for
actual observer performance. First inspection of the
data revealed how the real observers have performances
(i.e. efficiencies) below those of the ideal Psychometric
Observer. We thus added noise in various stages to
determine which noise source is mostly accountable
for the resulting behavior of real observers. According
to our modeling, there are two possible stages where
noise may arise: a late stage affecting the motor
implementation of mouse movements and an early
stage that hinders the perception of stimulus changes
(Pelli, 1991b). The performances of the Psychometric
Observer were averaged across 30 independent
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simulations, to reduce fluctuations on the effects of
noise.

Results

We designed two tracking experiments, where
participants had to continuously counteract variations
in the numerosity or size of a cloud of dots shown on
screen. First, we verified that tracking performance
in the two tasks increased when the stimulus
underwent larger changes, that is, when SNR was
increased, and compared performance to a standard
psychophysical task. Then, we attempted to express
tracking performances as a comparison with an ideal
observer, that is, a noise-free virtual observer. Finally,
we modified the ideal observer into a “psychometric
observer” in order to address whether performance was
more affected by random movements in the mouse, or
by noise in stimulus detection.

Tracking

Participants viewed a dynamic dot display whose
numerosity changed smoothly, following a random

walk, and annulled the changes in numerosity by
moving a computer mouse appropriately (see Methods).
An example of the resulting tracks is shown in Figure
1A. The continuous black trace shows the random-walk
in numerosity attempted by the computer, and the red
trace shows the mouse movements of the participant
attempting to annul the changes in numerosity. The
actual numerosity on screen (given by the combination
of the other two traces) is shown by the dotted trace.

Figure 1B shows the cross-correlation between
stimulus changes (input) and mouse movements
(output) for five different levels of signal to noise.
Because the experiment required annulling of changes
in the stimulus, mouse movements were reversed in
sign to yield positive correlation when movements were
made in the correct direction. For all levels of signal
strength, the cross-correlograms have a clear positive
peak, with a delay of 600 to 1000 ms. In both tasks, the
amplitudes and latencies of the peaks clearly depend
on SNR. Figure 1C plots the average peak, lag, and
width across participants as a function of the average
change. Like Bonnen et al. (2015), we find a significant
dependence on the average change for the peak,
width, and lag of the cross-correlogram. Results are
summarized in Table 2. Peak of the cross-correlogram
results the best predictor for the SNR of the stimulus.

Figure 1. Results of the tracking experiments. (A) Example stimuli for the numerosity task. (B) Example of a 20 second trial of
numerosity tracking. The black solid line represents the evolution of the stimulus numerosity if no mouse movements were made by
the participant, and the red line the mouse position. The black dashed line is the actual numerosity presented on screen, which is the
result of the sum of mouse movements and computer driven changes in numerosity. The numerosity changes independent of mouse
movements were generated according to a pseudo random walk (see Methods) hence the changes were uncorrelated from time to
time and served as a basis for deriving cross-correlations. (C) Cross-correlations in Area and Numerosity annulling tasks for various
levels of signal strength. The left panel shows results for the area task for a representative participant, right panel results for the
numerosity task for the same participant. The color scale represents the different conditions: lighter colors higher SNR, larger changes
in the stimuli. (D) Linear trend of the average across participants for the three parameters (peak, width, and lag) for the two tasks (red
for area and blue for numerosity) as a function of changes in the stimuli. The three measures are all significantly correlated with
average changes. Results are shown in Table 2.
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Average change Weber fraction

Feature Task Correlation Log10 Bayes factor Correlation Log10 Bayes factor

Peak Area r = 0.99
p < 10−3

1.3 r = −0.75
p < 10−3

2.0

Numerosity r = 0.97
p = 0.005

0.9

Width Area r = −0.90
p = 0.003

0.5 r = 0.49
p = 0.04

0.3

Numerosity r = −0.93
p = 0.02

0.6

Lag Area r = −0.92
p = 0.02

0.6 r = 0.20
p = 0.41

−0.4

Numerosity r = −0.84
p = 0.07

0.3

Efficiency Area r = 0.97
p = 0.007

0.9 r = −0.65
p = 0.003

1.2

Numerosity r = 0.93
p = 0.02

0.6

Table 2. Summary of dependencies of cross-correlogram parameters (peak, lag, and width) and efficiency as a function of the average
change in the stimulus, separately for the two tasks, and as a function of Weber Fraction.

Two alternative forced choice

To compare the results of the annulling paradigm
with more standard psychophysics, participants
performed two 2AFC discrimination tasks, one for
area and one for numerosity (see Methods for details).
Points of subjective equality (PSEs) are close to the
expected null value (mean PSEAREA = −0.02 octaves;
mean PSENUM = −0.11 octaves). The WFs, given by
the slope of the psychometric functions, are of more
interest to compare with the tracking results. Figure 2B
shows the WFs for all participants in the two tasks,
showing that WFs for the area task were significantly
lower than those for the numerosity task, confirmed by
a two-sample t-test (t = 3.4, p < 0.01).

Figure 2C shows participant-by-participant averages
of the cross correlogram parameters as a function of
the WF. The height of the peak correlated strongly
and significantly with WFs (r = −0.75, p < 10−3, and
log10BF = 2.0), suggesting that it is the parameter most
closely related to numerosity sensitivity, as measured
by standard psychophysical techniques. The width of
the correlograms is also correlated to the WFs, but the
correlation strength was weaker, and the Bayes factor
was low (r = 0.49, p = 0.04; and log10BF = 0.3). The
lag of the correlograms did not correlate with WF (r =
0.2, p = 0.4, and log10BF = −0.4).

Comparison with ideal observer

Given that the two paradigms yielded results
consistent with each other, we examined how well

participants can be modeled by a linear observer. We
developed the Linear Virtual Observers, which behave
as linear operators with a filtering kernel given by
participant impulse response functions, and compared
responses of this ideal, noise-free observer with human
participants. The correlation between the two response
sequences yields an index of similarity of the actual
observer to the noise free observer and thus acts as an
index of efficiency (Barlow, 1962; Pelli, 1991a; Pelli &
Farell, 1999).

Figure 3 shows how the virtual observer is built
and how it is compared to the real observer. The
human observer is approximated by a linear model,
which receives changes in the stimulus as input (S) and
converts these inputs into an output (R), the changes
in mouse position. Cross correlating the input and the
output across many different trials provides an estimate
of the transfer function (K) of the Linear Observer
(see Appendix A for details). The resulting transfer
function can be used to implement an ideal observer
that responds to each change in the stimulus, generating
an ideal response (R’) for the same inputs received by
the human observer.

Figure 3B shows an example of the results for
a single 20 second trial. The input S (in black) is a
series of instantaneous changes occurring at random
intervals, the blue curve the response R, given by
the velocity of mouse the movements, and the red
curve the response of the ideal observer R’. The two
curves are inverted in the figure because the paradigm
requires annulling of changes, so positive changes in
the stimulus should induce negative changes in mouse
position, and the latter were inverted for both the
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Figure 2. Correlation between tracking and traditional 2AFC psychophysics. (A) Psychometric functions for the two 2AFC tasks,
combining data from all participants. Proportion of time the participant reported an increase of the stimulus plotted as a function of
the variation in the presented stimulus, on logarithmic scale. Red squares show responses in the area task and blue circles the
numerosity task. Color-coded lines show the best cumulative gaussian fit. (B) WFs in the two 2AFC tasks (red area and blue
numerosity) computed separately for different participants. Errors are the standard errors of the WFs. (C) Participant-by-participant
average values of peak, width, and lag of the cross correlogram plotted as a function of the Weber Fraction. The grey lines are the
result of linear fits of the data.

human and ideal observers to ease the visualization.
Correlating the ideal response R’ and the real response
R yields an estimate of the efficiency of human observer
in transforming inputs into outputs (see Appendix B).
Note that the two tracks are generally similar but can
diverge when the human observer processes the inputs
incorrectly.

Figure 3C shows the numerosities implied by the
previous data (integration of the curves in Figure 3B).
The black track is the random walk attempted by
the computer, which is closely reproduced by the red
curve representing the ideal observer, save for a delay
introduced by the estimated transfer function. The blue
curve represents the actual mouse movements of the
participant. The ideal observer is a good predictor of
mouse movements but reveals that participants did not
always follow the target track correctly. The discrepancy
between the two observers shows how accurately the
participant detected changes in the stimulus on that
particular trial.

Figure 4A shows efficiency as a function of the
average change in the two tasks. As for peak correlation
values, a clear trend is visible as the SNR increases. This
holds for both tasks (area: r = 0.97, p = 0.007, log10BF
= 0.9 and numerosity: r = 0.93, p = 0.02, log10BF =
0.6).

Average Weber Area versus
change fraction numerosity
(octaves) (p value) (p value)

0.087 −0.54 ± 0.01 (0.02) 0.48 (0.2)
0.13 −0.69 ± 0.01 (0.001) 0.55 (0.1)
0.175 −0.61 ± 0.01 (0.007) 0.78 (0.01)
0.26 −0.64 ± 0.01 (0.004) 0.73 (0.03)
0.35 −0.48 ± 0.01 (0.04) 0.75 (0.02)

Table 3. Results from correlating the efficiency with Weber
Fractions, aggregating the two tasksLast column shows
correlation between the efficiencies in the two tasks in different
conditions.

Figure 4B shows the efficiency across conditions as a
function of the WF. The two measures are significantly
correlated in all conditions (Table 3). The results shown
in Figures 4A and 4B can be interpreted as efficiency
being an effective measure of tracking performances,
because it is related to both perceptual sensitivity and
stimulus SNR.

Figure 4C shows in blue how these correlations
progress across conditions (expressed in absolute value
to help visualization). Correlations between efficiency
and WFs follow and inverted U-shape pattern with
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Figure 3. Ideal Observer Model. (A) Participants are modeled as a linear observer that receives changes in the stimulus (S) as input
and produces responses (R) through a transfer function (K). (B) Example of the comparison between responses by a human
participant and the ideal observer. The black curve represents changes in the stimulus, which were received equally by the human
participant and the ideal observer. The blue and red curve represent respectively the participant’s and ideal observer responses
inverted in sign, because the used paradigm required annulling of changes in the stimulus. The two tracks were rescaled to be
compared with the input by normalizing their standard deviations to the standard deviation of the input. Correlating the blue and red
curve gives an estimate of the similarity between the two tracks. (C) Tracks resulting by the integration of the curves in panel B. The
ideal observer (red) follows the stimulus random walk more closely than the human observer (blue).

lower values at the extreme SNR conditions (with
average change in the stimulus of 0.087 and 0.35
octaves, respectively).

This suggests that despite interindividual differences,
there is an optimal range where participant tracking
is mostly related to perceptual abilities. This range
appears to be in the proximity of the discrimination
threshold, whose average across participants in the
two tasks is shown as a vertical black dashed line, and
the shaded area represents the standard error of the
mean. Figure 4C also plots the correlation between
the two measures (grey diamonds). Correlations
between the two efficiencies follow monotonically
the SNR of the stimuli. For conditions one and two,
these correlations are low, and then become stronger
and stronger. One possibility is that, at low SNRs,
the probability of detecting the stimulus is highly
dependent on the perceptual channel involved, so
the two measures are not correlated. Indeed, the
correlation between just noticeable differences (JNDs)
from the 2AFC experiments is low (r = 0.5, p = 0.1,
log10BF= −0.12). On the other hand, the fact that these
measures become strongly correlated at SNRs above

threshold (peaking at 0.8) suggests that performance
is limited by a mechanism common to both tracking
tasks, possibly due to the motor decision stage which
implements mouse movements. The fact that these
correlations are high, however, reassures that at high
SNR the data are still capable of yielding a graded set
of responses across observers and reassures that the
drop in correlation between WF and efficiency is not
due to poor data quality.

Efficiency can be interpreted as an indication of how
predictable, or less noisy, participants’ responses are
as the SNR increases. To check if this is the case, we
implemented a cross-validation analysis: we estimated
the participant’s kernel from a subset of the data and
used it to produce ideal observe responses for the data
subset that was left out. In our case, we used half data
(3 minutes for each condition and 15 minutes total for
blocks chosen randomly) to estimate the kernel and
computed the efficiency of the remaining half of data,
without overlapping. Results are displayed in Figure
4D. The two samples were significantly correlated in
both tasks (area: r = 0.95, p < 10−3, log10BF = 20 and
numerosity: r = 0.97, p < 10−3, log10BF = 24).
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Figure 4. Efficiency as a measure of noisiness in the annulling paradigm. (A) Mean efficiency across participants plotted as a function
of average change (red for area and blue for numerosity). Lines are the result of linear fit (area: m = 0.90 and q = 0.14 and
numerosity: m = 0.74 and q = 0.24). (B) Efficiency as a function of Weber Fractions in different conditions. The two measures are
significantly correlated in each condition (results in Table 3). Black lines are linear fits of the data. (C) Correlation between efficiencies
in the two tasks (gray diamonds) and between efficiency and WFs, plotted separately for each condition, in absolute value. Error bars
represent the standard error of the mean obtained by bootstrapping. The black dashed vertical line is the mean discrimination
threshold across all participants and tasks. Shaded area is the S.E.M. (D) Results of cross-validation analysis of efficiency: efficiency
from the half dataset (y axis) plotted against efficiency with whole dataset (red for area and blue for numerosity). The solid line is the
linear fit of the data, which yields a slope of 1.01 and an offset −0.02. The black dashed line is the equality line. (E) Mean d’ across
conditions computed via bootstrapping, for the area task in the upper panel and for the numerosity task in the lower one.

As efficiency is significantly correlated with average
changes in the signal, we asked if efficiencies could
work as a proxy for stimulus strength in a realistic
scenario. We compared couples of adjacent conditions
(e.g. the first and second conditions) and measured the
d-prime of the efficiencies and of the peaks. Figure
4E shows the mean d’ computed via bootstrapping,
averaged across participants, for the peak of the
cross-correlogram (gray) and efficiency (black). Trial
blocks were combined to form 1-minute-long sessions
for each condition, and then estimated the d’ of the
resulting peaks of correlation and efficiencies across
conditions. This procedure was repeated 500 times to
obtain an estimate of the variability of the d’. Efficiency
results in a better predictor when SNR is very low,
whereas peak discriminates better at high SNR, with the
two measures being equivalent in between. Participants
have a lower WF in the area task than in the numerosity
one, so the subjective SNR is higher in the area task,
and the two d’ result similar even in the condition with
lowest SNR.

Psychometric observer

Efficiency allowed us to compare participants’
performance with those of a virtual observer
implemented as a linear observer model. In this way,
it was possible to relate results in the tracking task to
standard psychophysics, connecting inter-participant
differences with their discrimination abilities (i.e. with
their WFs). However, the factors limiting performance
(leading to efficiencies lower than unity) are still not
clear. In addition, results from efficiency indicate that,
in the tested range, the assumption of linear behavior
of human participants is effective.

To further investigate these aspects, we leveraged the
thresholds for each participant to construct an observer
that incorporates both the probability of seeing the
change in the stimulus and dynamic information
resulting from the annulling experiment. This virtual
observer has the same impulse response function as the
participant and responds either to the incoming change
or to its negative, with probability sampled from the
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Figure 5. Description of the Psychometric Observer. (A) The Psychometric Observer receives changes in the stimulus (S) as input,
which are corrupted by an early component of noise (E), simulating noise in early stages of perception. The noisy inputs are then
weighted according to the psychometric function of the participant, which causes the input to be perceived either correctly or
reversed. These inputs are then converted into a response (R) through a transfer function (K), and the responses are corrupted by a
late noise component, simulating noise in mouse movements unrelated to the processing stage. (B) Example of the weighted stimuli:
physical changes in the stimulus (blue) have a probability of being perceived correctly or reversed (red) by the Psychometric Observer,
with a probability dependent on the participants’ discrimination threshold estimated in the 2AFC experiment. Note that the two
larger changes have a higher probability of being interpreted correctly, while smaller ones are more likely to be misperceived. (C)
Example of the responses of the Psychometric Observer. Left: noiseless (E = 0 and L = 0) Psychometric Observer, with the inputs that
are misperceived in panel B clearly resulting in opposite mouse movements in respect to the Linear Observer. Middle: Effect of the
late noise L on the Psychometric Observer, resulting in errors in mouse movements completely unrelated to the processing stage;
Right: Effect of the early noise E on the Psychometric Observer, also resulting in errors in mouse movements, but related to the
misperception of the stimuli.

psychometric function of the participant resulting from
the 2AFC experiment (see Methods). In other words,
the Psychometric Observer has an additional stage
of processing simulating the conversion of physical
changes into subjective changes. Adding different
sources of noise to this observer results in a virtual
observer, which displays various degrees of suboptimal
performance, and can be compared to real participants’
behavior, which we called a Psychometric Observer.

Figure 5 describes the Psychometric Observer and the
effect of noise on its response in simplified conditions
for illustrative purposes. Figure 5A schematizes the
model from which the Psychometric Observer was
built. Physical changes in the stimulus (S) are corrupted
by an early component of noise (E), and then the
participants’ discrimination ability is considered: inputs
are interpreted by the Psychometric Observer either
correctly or reversed with probability sampled from
the psychometric function obtained in the 2AFC
experiment. The resulting weighted inputs are then
converted into a response (R) through a transfer
function (K) estimated from the tracking experiment,
and this response is corrupted by a late noise stage
(L), simulating noise in the implementation of mouse
movements. Figure 5B shows the difference between the
linear observer (blue), which interpretates all inputs
correctly, and the Psychometric Observer (red), which

receives three inputs correctly and the two incorrectly,
interpreting them as reversed. Figure 5C compares the
responses of the Psychometric Observer (red) and the
linear observer (blue) to the inputs in Figure 5B in three
different conditions: on the left, the noiseless (E = 0
and L = 0) Psychometric Observer responds to the
first stimuli as the linear observer, but responds in the
opposite way to those that were interpreted incorrectly;
in the middle, the same Psychometric Observer is
corrupted by a late noise component (E = 0 and L > 0);
on the right, the Psychometric Observer is corrupted by
an early noise component (E > 0 and L = 0). When
a late noise component is added to the response of
the Psychometric Observer, simulating involuntary
movements of the mouse unrelated to the stimuli, the
resulting response shows random displacements from
the linear observer that do not change the overall shape
of the response. On the other hand, the effect of the
early noise component reflects responses that are driven
from misperceptions of the stimuli. In this simplified
situation, these effects were exaggerated to highlight the
differences between the two noise sources.

Figure 6 shows the Psychometric Observer built
from the psychometric functions from two different
participants. The efficiency is plotted against the
logarithm of the ratio between average changes in the
stimuli and the participant’s JND, which we labeled
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Figure 6. Psychometric Observers. Panels on the left show results for the participant with highest Weber Fraction in the 2AFC task,
the ones on the right for the participant with the lowest Weber Fraction. The efficiency is plotted against visibility defined as the
logarithm of the ratio between the average change and the JND. Negative values of visibility represent conditions where the physical
average change in the stimulus is lower than the participant’s JND, positive values represent above-threshold conditions, and visibility
is zero when changes match the participant’s JND. In all panels, blue lines are the results for the noiseless Psychometric Observer and
black circles are results of the participant from which the Psychometric Observer was built. (A) Gaussian noise with increasing
standard deviation was added to the input of the Psychometric Observer, simulating noise in perception. At high visibilities, the
efficiency saturates. At low visibilities, the Psychometric Observer’s performances are worsened in a way resembling real participants’
results. (B) Gaussian noise with increasing standard deviation was added to the output of the Psychometric Observer, simulating
noise in mouse movements. Such noise has very little effects at low SNRs, and a much bigger effect at high SNRs.

visibility: according to this definition, negative values of
visibility represent below threshold condition, positive
values above threshold conditions, and visibility is
zero at threshold (average change equal to a JND). In
this latter case, only half of the stimuli are interpreted
correctly, yielding an efficiency of 50%. Figure 5
displays the results from the Psychometric Observer in
the numerosity task for two representative subjects, the
ones with the highest (left) and lowest (right) WF. Note
that each participant was tested on the same physical
condition, but because JNDs are different the resulting
subjective condition is different for the two cases, with
the participant on the right panels being almost always
over the threshold and the participant on the left panels
almost always under the threshold.

Figure 6A shows the effect of various levels of the
early noise component (noise in perception) on the
Psychometric Observer, expressed in units of standard
deviations of the input signal. Interestingly, this noise
affects the Psychometric Observer’s performance both
at low and high visibilities, with the latter showing
saturation effects. This suggests that in the tested range,

deviation from ideal behavior can be explained by an
early component of noise acting on perception.

Figure 6B shows the effect of the addition of
late noise (motor noise), rescaled according to the
corresponding condition, as described in the Methods,
expressed in units of standard deviations of the
noiseless signal. At low visibility levels, the effect of
noise is close to zero, whereas at high visibility the
efficiency drops. The decrement in efficiency at high
visibility is because the late noise component prevents
the psychometric observer reaching 100%. As the
visibility increases, the discrepancy between the ideal
and the psychometric observer increases, reducing
the efficiency. When higher levels of noise are added,
the difference between the ideal and the psychometric
observers arises at lower visibilities, generating the
bell-shaped curves shown in Figure 6B. This behavior
may explain the saturation effect at high visibility
present in the data (black circles) in the left panel, but
it is clearly not sufficient to explain deviations from the
ideal psychometric observer at lower visibilities, where
noisy observers are close to the noiseless. Both noise
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sources are required to match participants’ behavior, as
saturation effects are present for the participant in the
right panels, but differences between the ideal observer
and the human observer at low visibility can only be
explained by an early component of noise.

Discussion

In this paper, we show that it is possible to generalize
tracking tasks to different perceptual domains, with
results analogous to previous tracking experiments
(Bhat et al., 2018; Bonnen et al., 2015; Bonnen et al.,
2017; Huk et al., 2018; Mulligan, 2002; Mulligan et al.,
2013), notably showing a dependency between SNR
and performance. Thus, it is possible to extend the
“tracking” paradigm beyond spatial features of the
stimuli, potentially to all domains of perception, with
an ecological and friendly paradigm. The choice of an
annulling paradigm was to avoid possible confounding
effects due to participants having to switch gaze between
two stimuli, one controlled by the computer and one by
the participant. However, this design is conceptually
very similar to the traditional tracking technique and
has been previously used with similar results to standard
tracking (Cormack, 2019; Li et al., 2005). We showed
that participant performance in various conditions
is related to perceptual discrimination thresholds.
Analysis of the results suggests that the main source of
noise originates early in the process of analyzing visual
stimuli, so the suboptimal efficiency of the responses
cannot be ascribed to random variance in the motor
plant, but mostly to noise in earlier stages of perceptual
processing. This was demonstrated by comparison of
participants’ behavior to a virtual observer, which we
call a Psychometric Observer, which incorporates both
the dynamic information from the tracking task and
the perceptual discrimination threshold from standard
psychophysical measurements. This result is important
for general applicability of the tracking paradigm
since differences across participants and across
conditions unrelated to stimulus presentation would
have restricted the relevance of tracking in studies of
perception.

Our paradigm and that of Bonnen et al. (2015)
implemented task difficulty in two different ways.
Bonnen et al. (2015) required position tracking and
varied the visibility (the SNR) of the stimulus by
changing the variance of the gaussian distribution.
Such changes resulted in approximately linearly scaling
variations in the cross-correlogram parameters, peak,
lag, and width, associated with the altered visibility
of the target. In the present work, the stimulus SNR
was varied by increasing or decreasing the changes
occurring at every frame, presumably in the face of
constant internal noise of the observer. Both studies

modulated the SNR of the stimulus, in our case
modulating the signal, whereas Bonnen et al. (2015)
modulated the noise. The results shown in Figure 1
show that augmenting the SNR in this way improves
participants’ performances in both tasks.

When we correlated the mean parameters of
the cross-correlogram across conditions with the
corresponding WFs, we found that peak and width of
the correlation were related to perceptual sensitivity,
but lag was not (see Table 3). We can only speculate
on the reasons for this difference. Importantly, our
paradigm required annulling the stimulus changes, so
the samples presented on the screen were always close to
the standard. This is slightly different from a tracking
experiment in which the observer has the pressure to
follow the target. We also point out that in a previous
study (Bhat et al., 2018) where participants tracked the
direction of motion, lag did not correlate significantly
with other performance measures. However, lag shows
a significant reduction with increasing signal strength,
presumably because of the increased visibility of
stimulus changes (Harris & Wolpert, 1998). This
suggests that lag measures may be related to perceptual
qualities only loosely, and mostly to the promptness of
decision-making processes (Palmer, Huk, & Shadlen,
2005).

With the simple computation described in the
appendix, it was possible to estimate the participants’
impulse response function, with which we generated a
linear observer to compare to participants’ responses
(Geisler, 1989a). We used the whole dataset to recover
the motor kernel, as previous reports have shown that
kernels vary subtly between SNR conditions (Bhat et al.,
2018; Bonnen et al., 2015). Thus, selecting a particular
condition as a gold standard could have artificially
decreased the efficiency in the other conditions, as
the predicted responses would have been derived by a
Kernel that is optimal for another dataset. Thus, we
used a Kernel from a comprehensive dataset that was
representative of all conditions.

Correlating the responses of the virtual observer
with human participants yields a measure of the
similarity between the two observers, and therefore
about how much of the participants’ behavior can be
predicted assuming linearity. We term this measure
efficiency, because our ideal observer simulates a
system that responds to all changes in the stimulus, and
the comparison between the two observers yields an
estimate of how much of the input signal is converted
into a response by the real observer. In this sense,
our linear observer can be interpreted as an optimal
observer constrained by the participants’ motor
implant, described by their response function (Geisler,
1989a; Geisler, 1989b; Geisler, 2003; Geisler, 2011). The
choice of correlation as a measure of similarity was
dictated by the fact that only the shape of the response
kernel can be safely estimated, but not its amplitude.
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Using correlation, which is invariant for multiplicative
factors, allows for a direct comparison of the responses.
Our model also assumes that Weber’s law holds for
both human and ideal observer. This is justified, since
it has been shown that Weber’s law holds for both
numerosity and size perception (Anobile et al., 2014;
Ganel et al., 2008). With increasing SNR, participant
responses become more predictable, or less noisy,
and the correlation between ideal and real responses
increases. This is shown in Figure 4A, for both tasks,
where a linear trend like that of Figure 1C is present.
In addition, the participants’ efficiency is significantly
correlated with WFs, as were the cross-correlogram
parameters. This suggests that efficiency is an effective
measure for participant performance in a tracking task,
based on the assumption of linearity in the conversion
of changes in the stimuli into motor responses in the
tested range. The results of Figure 4C suggest there is a
linear range where efficiency is best related to perceptual
ability: as signal strength increases, efficiencies in the
two tasks become more correlated. This is compatible
with the interpretation that for higher SNRs participant
responses are relatively more corrupted by noise from
mouse movements than at lower SNR levels, reducing
the contribution of perceptual mechanisms to the
differences between the two tasks. This interpretation
is reinforced by the fact that correlating the efficiencies
with WFs results in higher correlation for the central
conditions than for the extremal conditions, where
responses are more likely to be corrupted by noise.
Contrasting the real observer against an ideal observer
with perfect memory also leads to the inclusion of
memory drifts into the analysis, which is undesirable.
However, because we are basing our comparison on
how the ideal and real observer would have changed
their responses as a function of stimulus changes, the
impact of drift is negligible, as even large drifts would
spread over many frames (typically 2400) per session.
Indeed, detrending the data to remove drift biases
gave near identical results (99.99% correlated, mean
difference between efficiencies approximately 10−4).

We tested the reliability of efficiency through
cross-validation: half of the trial blocks were used to
estimate the impulse response function, which then
generated ideal responses for the remaining half of the
data. We found a strong correlation (r > 0.9) between
efficiencies computed in the two ways, proving the
reliability of efficiency as a measure of performance.
This also suggests that robust results would have been
found with shorter acquisitions.

We note that the estimation of the impulse response
function can be done by aggregating data from different
SNR levels, so the amount of data from which the
efficiency can be calculated is much higher than for
the single parameters of the cross correlogram, which
must be computed separately in each condition.
This provides a strategy for faster data acquisition,

because the Psychometric Observer analysis shows that
exists a broad range of informative SNR conditions
that can be tested. Tuning algorithms can also be
used to adapt the testing conditions until the desired
range is reached, using efficiency as a parameter for
convergence. This strategy may be particularly useful
when the optimal testing range cannot be known a
priori, as in absence of knowledge about discrimination
threshold. Additionally, we showed that not all SNR
conditions are equally informative, so adopting a tuning
algorithm will allow to test conditions above or below
the perceptual discrimination threshold, depending on
the aspects under investigation. In addition, in Figure
4E, we showed that at very low levels of SNR, when the
cross-correlogram becomes noisy, efficiency becomes a
better discrimination parameter than peak. Therefore,
efficiency can be used for noise levels that would make
the estimate of the cross-correlogram parameters
impractical.

Simulations with the Psychometric Observer also
show an important feature of the efficiency measure.
Efficiency is particularly dependent on sensory noise
especially for variations close to threshold, because
perceptual noise is most important in this range and
motor noise is not. This is demonstrated by the plots
of Figure 6, but also by the fact that the Psychometric
Observer captured the rise of efficiency as a function
of signal strength. On the other hand, at high visibility
levels, where the sensory component has plateaued,
the crucial limiting factor for the kernel is the motor
plant implementing the action of the observer. In our
paradigm, conditions with higher perturbations also
entailed a higher mouse-to-screen gain, so that the
observer would perform the task identically with the
same motions.

These analyses also lead to the speculation that tests
at low visibility levels may indeed return a proxy for
the quality of sensory representations, whereas the
performance at higher SNRs is more dependent on the
ability to accumulate and transform a host of highly
salient stimuli and thus may reflect secondary processes.

In conclusion, our results support extending the
tracking technique beyond pure object-tracking
situations, to yield a large amount of psychophysically
relevant data with short acquisitions. By testing two
different perceptual mechanisms (numerosity and
size), we have shown that tracking performances are
strictly linked to perceptual abilities, with different
discrimination thresholds leading to different tracking
performances. Still, in both tasks, the SNR of different
stimulus features modulates tracking performance
in a similar way. This paradigm may be particularly
useful in testing participants who can produce
only limited amounts of data, such as children or
clinical populations. Additionally, by virtue of its
dynamic implementation, the tracking paradigm may
provide novel temporal information about perceptual
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mechanisms, ideally exploiting realistic stimuli in
ecologically relevant circumstances.

Keywords: ideal observer, continuous tracking,
numerosity
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Appendix A:
Cross-correlogram as an estimate
of the transfer function

To ease the notation, we define

conv (A (t) ,B (t)) = ∫A (τ )B (t − τ ) dτ

and

xcorr (A (t) ,B (t)) = ∫A∗ (τ )B (t + τ ) dτ

where A(t) and B(t) are two generic functions and A*(t)
is the complex conjugate of A.

Assuming a linear model for the observer, the
output O can be written in function of the input I as a
convolution

O = conv (I,K ) (1)

where K is the kernel of the transfer function. When
computing the cross correlation between input and
output we have

XC = xcorr (O, I )

where we neglect a minus sign associated with
the annulling paradigm. Rewriting the output as
in Equation 1 we have

XC = xcorr (conv (I,K ) , I )

Using the property of convolutions and cross-
correlation

xcorr (conv (A,B) ,C ) = conv (xcorr (A,C) ,B)

we have

XC = conv (xcorr (I, I ) ,K )

and the term xcorr(I, I) is the autocorrelation of the
input. Changes in input are randomly distributed in
time and instantaneous, that is, an aperiodic comb
function:

I =
∑

n
In ∗ δ (t − tn)

where tn are the random instants when changes occur.
Their autocorrelation is then a delta function in t = 0.
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We have:
XC = conv (E ∗ δ (0) ,K )

Where E = ∑
n I

2
n . Then

K = XC
E

.

This enables us to estimate the filter kernel up to a
scaling factor. In real situations, both the input and the
output have a noise component, which results in noise
in the cross correlation.

Appendix B:
Root explained variance as a
measure of efficiency

The response from the human observer H can be
thought as the response from the ideal observer V with
noise η, so

H = V + η

where V is obtained from Equation 1 using the kernel
estimated from tracking data using the procedure in
Appendix A.

The correlation between the human and ideal is then

r = σVH

σVσH

where σV and σH are the standard deviations of the
ideal and human observer responses respectively, and
σVH is the covariance between the two. σVH can be
made explicit as

σVH = σV,V+η = σVV + σVη = σ 2
V

because the covariance σVη between the ideal observer
and noise is zero. Note that the last equality holds only
if the human and virtual observer are considered with
the same temporal order. Then

r = σVH

σVσH
= σ 2

V

σVσH
= σV

σH

Taking the square of the correlation yields the
explained variance, resulting in the definition of
efficiency E given in (Pelli & Farell, 1999) as the ratio of
the energies of the ideal and human observer:

E = σ 2
V

σ 2
H

The two ways of defining efficiency are therefore
strictly linked, but correlation is better suited for
our implementation, as it depends on the timing of
changes. In addition, it preserves the relative sign of
mouse movements and changes in the stimulus, because
in our implementation responding with a rightward
movement of the mouse is not equivalent to respond
with a leftward movement of the same size to the same
stimulus change.
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