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Auditory time thresholds 
in the range of milliseconds 
but not seconds are impaired 
in ADHD
Giovanni Anobile1, Mariaelisa Bartoli2, Chiara Pfanner2, Gabriele Masi2, Giovanni Cioni2,3 & 
Francesca Tinelli2*

The literature on time perception in individuals with ADHD is extensive but inconsistent, probably 
reflecting the use of different tasks and performances indexes. A sample of 40 children/adolescents (20 
with ADHD, 20 neurotypical) was engaged in two identical psychophysical tasks measuring auditory 
time thresholds in the milliseconds (0.25–1 s) and seconds (0.75–3 s) ranges. Results showed a severe 
impairment in ADHD for milliseconds thresholds (Log10BF = 1.9). The deficit remained strong even 
when non-verbal IQ was regressed out and correlation with age suggests a developmental delay. In 
the seconds range, thresholds were indistinguishable between the two groups (Log10BF = − 0.5) and 
not correlated with milliseconds thresholds. Our results largely confirm previous evidence suggesting 
partially separate mechanisms for time perception in the ranges of milliseconds and seconds. 
Moreover, since the evidence suggests that time perception of milliseconds stimuli might load 
relatively less on cognitive control and working memory, compared to longer durations, the current 
results are consistent with a pure timing deficit in individuals with ADHD.

According to current diagnostic systems (DSM-5), attention deficit hyperactivity disorder (ADHD) is defined by 
pervasive and severe symptoms of inattention, hyperactivity, and impulsivity that have a direct negative impact 
on social, academic, or occupational functioning. ADHD children often show deficits in planning, organization 
and in executive functions, such as response inhibition, interference control, reasoning, hindsight, anticipation 
and working memory set-shifting1.

Along with these deficits, findings suggest perceptual disfunctions related to time processing. Time perception 
in ADHD has been widely investigated but the results are mixed, probably reflecting the many different methods 
and performance parameters. Measures of time processing includes accuracy (how far from the target) and/or 
precision (response variability) measured by motor reproduction, verbal estimation, discrimination, and odd-ball 
tasks. Moreover, time processing has been investigated across different timing ranges (from a few milliseconds 
to several seconds) and across sensory  modalities2. Even if the literature and the clinical practice indicate an 
impaired time processing in ADHD, the highly heterogeneous results make it difficult to draw firm conclusions.

A meta-analysis considering 27 studies on ADHD children and adolescents found a significant timing deficit 
in ADHD with impairments in both accuracy and precision and across visual and auditory  stimuli3. Another 
recent meta-analysis considering 12 studies, despite generally confirming a time deficit in ADHD, suggested 
that there was a stronger effect size for tasks involving relatively long intervals (5 s) and for specific tasks such as 
estimation and  reproduction4. An example of how the task and the timing range could affect the results comes 
from the study conducted by Smith et al.5. The authors measured time discrimination thresholds in a sample of 
ADHD children by asking participants to indicate which one of two audio-visual stimuli, ranging around 1 s, 
lasted longer. Results revealed higher thresholds (lower precision) in children with ADHD. In contrast, no group 
differences were found when time processing was measured with a reproduction task or with a verbal estimation 
task with longer (5 s–10 s) stimuli. Toplak and  Tannock6 also measured duration discrimination thresholds in 
a sample of ADHD adolescents for visual and auditory stimuli and for both short (around 200 ms) and longer 
(around 1 s) intervals. Results confirmed higher thresholds compared to controls, but across all the tasks. Similar 
impairments across vision and audition were later obtained by Rubia et al.7 with younger ADHD children and 
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by Dölek et al.8 with adults. Plummer and  Humphrey9 measured ADHD children’s timing performance with a 
motor reproduction task. Children were asked to reproduce, by key press, the duration of visual, auditory, or 
audio-visual stimuli ranging from 1 to 60 s. Results showed higher errors in ADHD across all the conditions. 
Radonovich and  Mostofsky10 measured ADHD duration discrimination thresholds for short (around 0.5 s) and 
longer (around 4 s) auditory stimuli. At odds with some of the previous studies, the results showed no deficits 
for the shorter stimuli but poorer performance for longer intervals. Gooch et al.11 measured auditory time dis-
crimination thresholds in ADHD by asking children to detect which of three sounds was different in duration 
(odd-one-out task) with stimuli ranging from 400 ms to 1 s. The results revealed higher thresholds (lower preci-
sion) in children with ADHD, compared to controls. The same results were obtained with a motor reproduction 
task for longer visual stimuli (from 2 to 10 s).  Barkley12 measured time perception with a verbal estimation and 
a reproduction task testing the same visual stimuli, lasting from 2 to 60 s. The results revealed poorer time per-
ception (accuracy) for the reproduction, but not for the estimation, task. Two independent studies employing 
similar visual time intervals found the same pattern of  results13,14.

Interestingly, psychophysical and pharmacological studies indicate that the perception of relatively long 
stimuli requires and loads on cognitive control as well as working memory, while relatively shorter intervals 
(< 1 s) might be automatically processed and targeting a “pure” sense of  time15–17. A more recent study using 
imaging techniques showed that although there are many brain areas encoding both short (milliseconds) and 
longer (seconds) durations, short durations elicit relatively more activation in the parietal  cortex18. The authors 
suggest that this higher activation reflects a higher involvement of attentional resources when encoding short 
stimuli. However, the distinction between the use or non-use of attentional control as a function of stimulus 
duration is not clear-cut and there is also evidence for the involvement of cognitive resources in intervals in the 
millisecond range, leaving this issue largely  open19.

Overall, these and many other investigations suggest a time processing deficit in people with ADHD, with 
potentially relevant clinical and practical  implications20. However, given the heterogeneity of results, further 
investigation is needed. To this aim, 20 children/adolescents with ADHD were engaged in a testing protocol in 
which we psychophysically measured auditory time thresholds in the milliseconds (0.5 s) and seconds (1.5 s) 
ranges. To avoid methodological confounds, the same psychophysical technique (categorization task, see meth-
ods) was used for both timing ranges. The performance on these tasks was compared to those obtained from 20 
age-matched neurotypical controls. As many studies have found time perception deficits in children and adoles-
cents with ADHD, we expected higher thresholds, on at least one of the timing ranges tested here. As perception 
of short stimuli has been suggested to depend relatively less on cognitive control and working memory, compared 
to longer durations, a specific deficit for short stimuli would suggest a pure time deficit.

Materials and methods
Participants. Forty children/adolescents participated in this study: 20 with ADHD (6 female, 14 males, 
mean age = 11.2 year old, age range 8–16) and 20 neurotypical (11 female, 9 males, mean = 11.2 year old, range 
8.1–16.2). Individuals with ADHD were enrolled from the Stella Maris Foundation Institute in Pisa, a main 
center for ADHD care in Italy. ADHD inclusion criteria were: clinical diagnosis of ADHD based on DSM-5, a 
total intelligence quotient (TIQ), evaluated with the Wechsler Intelligence Scale for Children-IV21 above 75, no 
neurological or sensory deficits, no psychiatric comorbidities, no current or past pharmacological treatment. 
Three children with ADHD met the criteria for a diagnosis of developmental dyslexia. Non-verbal reasoning 
skills were computed by a combined index of WISC-IV measuring Visual Perceptual Reasoning (IRP). The IQ of 
four ADHD participants was measured by an external independent institute and, for those participants, we were 
unable to calculate IRP. ADHD symptoms were measured by Conners Rating Scale (parent version). General 
clinical symptoms were measured by the Clinical Global Impression—Severity scale (CGI) and the Children 
Global Assessment Scale (CGAS). Detailed information about the group with ADHD is reported in Table 1.

The participants with ADHD were compared to a neurotypical group of age matched children/adolescents. 
The inclusion criteria for the control group were: no medical history, negative neuro-psychiatric exam and no 
learning difficulties (reported by parents) and IQ (evaluated with by Raven Colored Progressive Matrix-CPM or 
Progressive Matrix-PM, depending on chronological age) > 5° percentile. The study was approved by the Ethics 
Committee of the Meyer’s Hospital (n. 248/2020 ID-DNATN "Attention, Time and Numeracy in children and 
adolescents with neurodevelopmental disorders"). Informed parental consent was obtained for each participant 
before the study. All experiments were performed in accordance with relevant guidelines and regulation.

Time perception. Time sensory thresholds were psychophysically measured with an auditory categoriza-
tion task (Fig. 1A). On each trial, children listened to a single sound (500 Hz, 80 dB pure tone) and were asked to 
categorize it as “long” or “short”. Before the testing phase, four initial “anchoring” trials were provided; the lower 
and longer time durations were played twice each and the children were told that those sounds corresponded to 
the range extremes (no responses were required). In separate sessions (lasting around 4 min each), we measured 
two different timing regimes, one centered (geometric mean) around 0.5 s containing stimuli in the milliseconds 
range (from 0.25 s to 1 s, milliseconds hereafter), and one centered (geometric mean) around 1.5 with most of 
the stimuli belonging to the seconds range (from 0.75 to 3 s, seconds hereafter). Each time range was divided into 
11 equal steps spanning 1 octave above and one below the geometric mean of that specific range. The stimuli in 
the 1.5 s distribution were: 0.75, 0.86, 1, 1.13, 1.3, 1.5, 1.72, 1.98, 2.27, 2.61, 3 s. The stimuli in the 0.5 s distribu-
tion were: 0.25, 0.28, 0.33, 0.38, 0.43, 0.5, 0.57, 0.66, 0.75, 0.87, 1 s. In a single session, each duration was tested 
4 times (randomly selected trial-by-trail) for a total of 44 trials for each range. Participants responded verbally 
(“long” or “short”), without any time pressure and the response was registered by the administrator with an 
appropriate key press. The proportion of “long” responses were plotted against the stimuli duration (in log scale) 
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and fitted with a cumulative Gaussian error function. The 50% point of the fit provided an estimate of the point 
of subjective equality (PSE). The difference in duration between the 50% and 75% points gives the just notable 
difference (JND), which was used to estimate Weber Fractions (10^JND-1), a dimension free index of sensory 
precision.

Data analysis. Data were analyzed by Repeated Measures Analyses of Variance (RM-ANOVA), Analysis of 
covariance (ANCOVA), t-test and Pearson correlations and α values corrected for multiple comparisons when 
necessary (Bonferroni correction). Frequentist statistics were supplemented with Bayesian statistics, calculating 
Bayes Factors, the ratio of the likelihood of the alternative to the null hypothesis, and reporting them as base 
ten logarithms (Log10 Bayes Factors, LBF). For RM-ANOVA and ANCOVA with report  LBFinclusion indicating 
how much the data are likely to occur from a model including that specific factor (or interaction), compared 
to models not including them. By convention, LBF > 0.5 is considered substantial evidence in favour of the 
alternative hypothesis (difference between groups in this case) and LBF < − 0.5 substantial evidence for the null 
hypothesis (no difference). Absolute values greater than 1 are considered strong evidence, and those greater than 
2 as definitive evidence.

To make the ADHD Visual Perceptual Reasoning (IRP) index comparable to the non-verbal reasoning skills 
measured by Raven matrices on the control group, the indexes were both converted into z-scores (according to 
the normative age-standardized data provided by the tests manuals). For technical reasons we did not collect 
data for two participants (one control and one ADHD) in the seconds timing task. Missing data were left empty 
and excluded analysis by analysis. Effects sizes were reported as Cohen-d and η2. Data were analyzed by JASP 
(Version 0.8.6), SPSS (Version 25) and R (Version 4.0.2) software.

Results
Demographical data. The ADHD and control groups did not differ in age  (t(38) = 0.035, p = 0.97, d = 0.011, 
LBF = − 0.52) and male/female ratio  (X2 = 0.93, p = 0.33). Non-verbal reasoning skills were slightly lower in the 
group with ADHD  (t(32) = 1.8, p = 0.083, d = 0.6, LBF = 0).

Groups difference on time perception sensory precision. All participants were well able to perform 
the psychophysical timing task (depicted in Fig. 1A) producing ordered psychometric functions. Figure 1B,C 
shows psychometric functions obtained aggregating all the data together across participants. It is evident, even 
by inspection, that for the task measuring time perception in the milliseconds range (B), the psychometric func-
tion of the control participants (black) was steeper than that produced by the sample with ADHD (red). This 
difference indicates less precision (higher thresholds, Weber Fractions) in individuals with ADHD. Regarding 

Table1.  Descriptive characteristics of the ADHD group. TIQ Total Intelligence Quotient from WISC-IV, IRP 
z-score Visual Perceptual Reasoning from WISC-IV; Subtype 1 inattentive, 3 combined; dd developmental 
dyslexia, CGI Clinical Global Impression – Severity scale, CGAS Children Global Assessment Scale, C1 
Conners parents oppositivity, C2 Conners parents inattanetion, C3 Conners parents hyperactivity, C4 Conners 
parents ADHD index, n.a. not available.

Participants Sex Age TIQ IRP z-score Subtype CGI-S CGAS C1 C2 C3 C4

1 M 15 years 6 months 103 1.13 1 3 60–51 n.a n.a n.a n.a

2 F 9 years 6 months 90 − 0.73 1 2 70–61 45 60 52 65

3 F 12 years 3 months 88 − 1.2 3 2 70–61 42 68 51 67

4 M 9 years 3 months 94 − 0.4 3 4 50–41 77 73 63 80

5 M 14 years 11 months 97 − 1.2 3 + dd 4 50–41 77 75 61 75

6 M 13 years 3 months 125 n.a 3 2 70–61 55 49 35 56

7 M 10 years 5 months 114 n.a 1 2 60–51 74 70 70 72

8 M 8 years 4 months 91 − 0.13 3 4 60–51 78 75 70 80

9 M 11 years 110 n.a 3 5 50–41 71 75 80 80

10 M 9 years 1 months 114 1.26 3 4 60–51 80 75 63 80

11 M 12 years 6 months 88 n.a 3 2 70–61 60 53 57 65

12 F 11 years 1 months 98 − 1.2 3 4 50–41 n.a n.a n.a n.a

13 M 11 years 1 months 100 0 3 3 60–51 55 50 47 61

14 F 9 years 8 months 105 − 0.13 3 3 60–51 45 56 52 63

15 F 12 years 1 months 92 0.13 3 + dd 4 60–51 n.a n.a n.a n.a

16 M 11 years 9 months 77 − 1 1 3 70–61 70 100 56 100

17 M 12 years 6 months 101 − 1.2 3 6 60–51 n.a n.a n.a n.a

18 M 11 years 6 months 102 0.4 1 6 60–51 64 63 61 66

19 M 8 years 7 months 107 0.73 3 5 50–41 64 66 70 n.a

20 F 10 years 96 1.13 3 + dd 6 60–51 49 39 48 13
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the seconds range (C) the psychometric functions have similar slopes between groups, indicating similar sen-
sory precision levels.

The fitting procedure was applied to the data provided by each participant (see Table 2 for descriptive sta-
tistics). Figure 2 reports between participants average thresholds (Weber Fractions, Wf) separately for the two 
perceptual tasks, while single subject data are reported in Fig. 2B,C. From visual inspection, it is evident that 
only the time perceptual thresholds measured for short (0.5 s) auditory stimuli were impaired in participants 
with ADHD, with a clear interaction between tasks and groups.

A RM ANOVA with task (2 levels: Wf 0.5, Wf 1.5) as repeated measures factor and group (2 levels: ADHD, 
controls) as between participants factor, revealed a significant effect of task  (F(1,36) = 7.38, p = 0.01, η2 = 0.12, 
 LBFincl = 2.31), suggesting different thresholds across tasks. Crucially the task*group interaction was highly sta-
tistically significant  (F(1,36) = 18.04, p < 0.001, η2 = 0.29,  LBFincl = 2.59) indicating that the groups performed dif-
ferently across the tasks. Post-hoc analyses confirmed that time thresholds for milliseconds (0.5 s) stimuli were 
higher in the ADHD group compared to controls  (t(38) = 3.98, p < 0.001, d = 1.26, LBF = 1.9). On this task, ADHD 
thresholds were, on average, almost double compared to controls (Wf = 0.23 and 0.12 for ADHD and controls 
respectively), indicating a severe impairment. Time thresholds for seconds (1.5 s) stimuli  (t(36) = 0.26, p = 0.79, 
d = 0.08, LBF = –0.5) were statistically indistinguishable between the groups.

Figure 1.  (A) A block consisted of four initial “anchoring” trials in which the shorter (0.25 s or 0.75 s 
depending on the condition) and the longer (1 s or 3 s depending on the condition) stimuli were presented 
(participants were told that those sounds correspond to the range extremes). After this phase, the testing phase 
started, and participants were asked to categorize as “long or short” a sound randomly drawn from a pre-defined 
distribution. (B,C) Psychometric functions (aggregate data) for controls (black, squares) and participants with 
ADHD (red, circles) for the milliseconds (B) and seconds (C) ranges.

Table 2.  Descriptive Statistics on time thresholds (Weber Fraction). Two tailed t-tests, α Bonferroni corrected 
0.05/2 = 0.025.

Tasks Groups N Mean (SD) p-value Cohen’s d LBF

Time milliseconds range (0.5 s)
ADHD 20 0.23 (0.1)

 < 0.001*** 1.26 1.9
Controls 20 0.12 (0.05)

Time seconds range (1.5 s)
ADHD 19 0.15 (0.07)

0.79 0.08 –0.5
Controls 19 0.14 (0.06)
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To explore the specificity of the impairment found for the time perception task in the milliseconds range, 
we ran a separate ANCOVA with time thresholds as the dependent variable, groups (ADHD, controls) as the 
fixed factor and age, non-verbal reasoning, and sex as covariates. Even when partialling out the effect of these 
covariates, the result remained unchanged with a significant effect of the group  (F(1,29) = 20.11, p < 0.001, η2 = 0.33, 
 LBFincl = 2.78).

To check the discriminant power of the milliseconds auditory time thresholds, we ran a linear discriminant 
analysis with the group as the dependent variable and time thresholds (0.5 s Wf) as independent variable. The 
results revealed 72.5% of cases correctly classified. The sensitivity was 60% while specificity was 85%. As a sanity 
check, the same analysis on seconds stimuli thresholds (Wf) provides a near to chance level (53%) classification.

Developmental trajectories. To investigate whether the deficit was stable across the age range, we studied 
the developmental trajectories. Time thresholds for seconds stimuli had a similar and not significant dependency 
with age across both groups (ADHD: r = − 0.43, p = 0.062, LBF = 0.15, controls: r = − 0.42, p = 0.068, LBF = 0.12), 
suggesting that both were near to a developmental plateau. The developmental trajectories of time thresholds in 
the milliseconds range were, in contrast, different between the groups. While the controls had reached an almost 
full developmental stage (r = − 0.34, p = 0.14, LBF = − 0.11), the age dependence for participants with ADHD was 
steeper (r = − 0.62, p = 0.003, LBF = 1.2), suggesting a different developmental trend (Fig. 3). Confirming partially 
independent mechanisms, regressing out age, thresholds for milliseconds and seconds stimuli were not corre-
lated with each other (ADHD:  rpartial = 0.367, p = 0.134, LBF = 0.09 ; controls:  rpartial = 0.287, p = 0.25, LBF = –0.07).

Correlations with clinical symptoms. Within the sample with ADHD, we ran correlations and between 
time thresholds (milliseconds and seconds) and both general (CGI, CGAS, see Table 1) and specific clinical 
symptoms (the four parents Conners indexes, see Table 1 for details). For the CGAS test, which provides range 
scores, we transformed the ranges into categorical values reflecting the symptoms severity (following the test 
manual: from 1 to 10 with one indicating no symptoms and 10 indicating very severe symptoms). The analyses 
revealed no meaningful correlations (all p > 0.05, min LBF = − 0.55, max LBF = 0.3).

Perceptual task reliability. It is theoretically possible that the different pattern of results provided by the 
two time tasks results from different reliability levels. To test this possibility, we measured and compared the 
reliability of the two psychophysical tasks. Following previous  studies22, we used a “sample-with-replacement” 
bootstrap  technique23. For each participant, we calculated two separate thresholds in each task (0.5 s or 1.5 s), 
using a random sample of the data (44 trials, sampled with replacement), and then computed the correlation 
between those two measures, across participants. The process was reiterated 1,000 times. We found that mean 
correlations for milliseconds (0.5 s) and seconds (1.5 s) stimuli were very similar (Pearson’s r = 0.68, r = 0.64, 
respectively) and not statistically different (bootstrap sign-test p = 0.4). This last control rules out the possibility 
that the different pattern of results was generated by different reliability levels.
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(B–D) Individual data reporting time thresholds distributions. Horizontal lines report data average.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1352  | https://doi.org/10.1038/s41598-022-05425-2

www.nature.com/scientificreports/

Contextual effects. The paradigm used to measure time thresholds requires the ability to perceive both the 
stimuli mean and range extremes of the set. The group with ADHD could have had excessive contextual effects, 
which would have inflated thresholds. To check for this possibility, we measured (on aggregate data) the PSEs 
and thresholds as a function of the magnitude of the preceding stimulus (N-1). To this aim, separately for the 
two groups and the two tasks, we sorted the aggregated data into two categories in which the preceding stimulus 
(N-1) was shorter or longer than the stimulus tested in the current trial. The data were then fitted by psychomet-
ric functions providing PSEs and thresholds (Weber fraction). The analyses releveled very small effects on PSEs 
for both groups (ADHD 1.5 s = shorter 1.4 s, longer 1.5 s; ADHD 0.5 s = shorter 0.56 s, longer 0.61 s; controls 
1.5  s = shorter 1.6  s, longer 1.6  s; controls 0.5  s = shorter 0.55  s, longer 0.56  s), suggesting similar contextual 
effects. More importantly, for both subdivisions (shorter, longer), the difference between groups for thresholds 
in the milliseconds condition remained evident and constant (Fig. 4) confirming similar contextual effects.
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Time perception accuracy. After exploring the differences between groups in terms of sensory precision, 
we then analyzed estimations accuracy (PSE: Point of Subjective Equality, see Fig. 5 and Table 3). A RM ANOVA 
with task (PSEs time 0.5 s, PSEs time 1.5 s) as repeated measures factor and group (ADHD, controls) as between 
participants factor revealed an obvious significant effect of task  (F(2,36) = 420.7, p < 0.01, η2 = 0.91) suggesting 
that PSEs change as a function of the task. Importantly, the task*group interaction was statistically significant 
 (F(2,36) = 5.03, p = 0.031, η2 = 0.01) indicating that the groups performed differently across the tasks. The between 
factor “group” was not statistically significant  (F(1,36) = 2.3, p = 0.13, η2 = 0.06) suggesting that, on average, the two 
groups performed similarly. To explore the interaction, we ran a series of post-hoc t-tests (α Bonferroni cor-
rected = 0.025). In the range of milliseconds, the analysis revealed no differences between groups (t(38) = 0.91, 
p = 0.37, Cohen’s d = 0.28). In the range of seconds the group with ADHD, compared to the controls, showed a 
tendency to overestimate durations (t(36) = 2.03, p = 0.05, Cohen’s d = 0.65).

Discussion
We found that children/adolescents with ADHD, compared to neurotypicals, had a severe sensory precision 
deficit in perceiving auditory stimuli in the milliseconds range (0.25-1 s). Time thresholds for relatively longer 
stimuli (0.75-3 s) were unimpaired. Thresholds did not correlate between each other, and only thresholds for 
milliseconds durations showed a different developmental trajectory between groups, suggesting a developmental 
delay in participants with ADHD. Two control analyses ruled out the possibility that the pattern of results was 
driven by different tasks reliability levels and different use of contextual effects between groups. Consistent with 
previous  studies24, time processing abnormalities were equally reported in the various presentations of ADHD.

Time is not a unitary concept but encompasses many measurement scales, from a few milliseconds to several 
days. Even if there is not a defined boundary classifying a duration as “short” or “long”, one of the most classic 
distinctions is that between milliseconds and seconds stimuli. Clear dissociations have been previously found 
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Table 3.  Descriptive statistics: point of subjective equality (PSEs). Two tailed t-tests, α Bonferroni corrected 
0.05/2 = 0.025.

Tasks Groups N Mean (SD) p-value Cohen’s d

Time milliseconds range (reference: 0.5 s)
ADHD 19 0.6 (0.12)

0.37 0.28
Controls 19 0.57 (0.1)

Time seconds range (reference: 1.5 s)
ADHD 20 1.49 (0.24)

0.05 0.66
Controls 20 1.68 (0.31)
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by pharmacological studies. Rammsayer et al.25 found that administering ethanol impaired auditory temporal 
discrimination thresholds for long (1 s) but not shorter (50 ms) intervals. A similar pharmacological dissocia-
tion was later found by  Rammsayer17 showing that auditory temporal processing of long durations (1 s) was 
significantly impaired by administration of haloperiodol (a dopamine receptor antagonist) and midazolam 
(benzodiazepine), whereas processing of extremely brief intervals (50 ms) was only affected by haloperidol. 
The authors suggested that temporal processing of longer intervals is mediated by working-memory functions, 
while temporal processing of intervals in the range of milliseconds is more dependent on the effective level of 
dopaminergic activity in the basal ganglia. Psychophysical experiments also supported this differentiation. For 
example, it has been demonstrated that increasing cognitive load by dual-task procedures deteriorates discrimi-
nation thresholds for relatively long (1 s), but not short (50 ms) auditory stimuli, suggesting that the encoding of 
longer intervals requires cognitive control and working memory, while relatively shorter intervals are automati-
cally  processed15,16. However, is worth mentioning that the link between time perception and cognition remains 
poorly understood and there is also evidence challenging whether or not cognitive control and working memory 
play a role merely based on stimulus length. For example, Holm et al.19 found that task cognitive and working 
memory loads both worsened repetitive motor timing (tapping) for durations in the millisecond range, more 
than in the seconds range. By a factor analyses approach Rammsayer et al. demonstrated that, while the model 
assuming two mechanisms underlying the processing of intervals in the seconds and the milliseconds ranges 
might be more appropriate, these two mechanisms are functionally overlapped, sharing 77% common  variance26. 
Moreover, imaging studies suggest that, in addition to the duration of the stimuli, other factors such as the use 
of movement to define a temporal estimate and the continuity and predictability of the task may influence the 
engagement of different timing mechanisms, making the picture more complex than previously  thought27.

By showing a specific impairment of auditory time thresholds for relatively short (0.5 s) but not longer (1.5 s) 
intervals in ADHD, the current results fit well with the idea of different mechanisms for those regimes. The null 
correlation between thresholds across the two-timing regimes is also consistent with this hypothesis. Given that 
ADHD is often associated with deficits in cognitive control and working memory, it seems counterintuitive 
that timing thresholds for automatic, but not those under cognitive control, were impaired in our sample with 
ADHD, suggesting a pure time perception deficit. Leaving aside whether or not cognitive resources are engaged 
depending on the duration of the stimuli, an issue that has not been directly tested here, the current results 
(together with much previous evidence) are difficult to explain, suggesting a unique system for timing perception.

It is worth noting that our results are opposite to those found by Radonovich et al.10. In that study the authors 
measured auditory discrimination thresholds in controls and in children/adolescents with ADHD with short 
(550 ms) and longer (4 s) intervals and their results demonstrated worse thresholds for long but not short inter-
vals. Although we do not have a definitive explanation to account for this difference, the different tasks could, 
even partially, account for that. The paradigm used by Radonovich et al. presented two pairs of tones, one with 
fixed delay and the other with variable delays, and participants were asked to report whether the second delay 
was shorter or longer than the first. Our paradigm required the presentation and categorization of a single tone. 
We find it reasonable to speculate that the Radonovich et al. task, compared to the task used here, would charge 
relatively more additional resources such as working memory and/or attention, which may account for the dif-
ferent pattern of results.

Regarding brain areas involved in the perception of milliseconds and seconds intervals, the literature, despite 
suggesting different networks, is not definitive. Mangles et al.28 compared auditory time discrimination thresholds 
between controls and patients with focal lesions in the frontal cortex or in the cerebellum. The results indicate that 
frontal lesions impaired timing thresholds for long (4 s) but not short (0.4 s) intervals, while cerebellar lesions 
impaired both. Harrington et al.29, however, cast doubts on the involvement of the cerebellum in the auditory time 
perception of milliseconds intervals (0.3 s, 0.6 s), with patients with cerebellar lesions showing similar thresh-
olds compared to controls. On the other hand, cerebellar lesions have been demonstrated to have detrimental 
effects on visual time thresholds for longer (8–21 s)  stimuli30. As mentioned before, basal ganglia have also been 
found to play a role in time perception. Gouvêa et al.31 trained rats to categorize sounds as belonging to a long 
or short category. Animals made few errors when categorizing the shortest and longest intervals (the extremes), 
but performance become worse for intervals near to the 1.5 s categorical boundary (range: 0.6–2.4 s). Recording 
from populations of single striatal neurons, the authors found cells firing at different times within the interval 
period, suggesting the existence of short and long preferring neurons. The causal role of striatal neurons was 
also demonstrated by injecting muscimol. As a result, the duration thresholds worsened significantly, compared 
to the control group injected with saline. The parietal cortex has also been shown to play a critical role in time 
 perception32–35. Hayashi et al.36 correlated time discrimination thresholds measured in a sample of neurotypical 
adults, with gray matter (GM) volume in different parts of cortical and subcortical areas. Results showed that GM 
volume in the cerebellum but not in the parietal cortex correlated with milliseconds stimuli thresholds whilst, 
contrarily, GM volume in the parietal cortex but not in the cerebellum correlated with seconds stimuli thresholds. 
Moreover (as in the current study) threshold for milliseconds and seconds stimuli did not correlate with each 
other. In the same line, a meta-analysis of imaging studies also suggests that the parietal cortex, compared to the 
cerebellum, is more likely activated by seconds  stimuli27. With the current psychophysical data, we cannot say 
much about the brain networks involved in milliseconds and seconds timing, but our findings are largely in line 
with the idea that those two functions engage distinct neural mechanisms.

Another interesting point emerges from the current results. The analysis of developmental trajectories 
(Fig. 3A) suggests that, rather than a generalized deficit across all ages, there could be a developmental delay 
for milliseconds thresholds in ADHD. Despite having few participants in the higher age range, the results seem 
to suggest that above 12/13 years old, the difference between groups would gradually decrease. Future studies 
might replicate this finding and expand the age range to quantitatively define the magnitude of such a possible 
developmental delay.
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Together with a sensory precision deficit, the existing literature has also shown that people with ADHD are 
more likely, compared to neurotypicals, to commit overestimation errors, suggesting a faster “internal clock”37,38. 
Our results are in line with this idea. In the task testing durations in the seconds range, participants with ADHD 
provided more "long" judgements compared to controls, leading to a leftward shift of the psychometric curve. 
This bias indicates a duration overestimation, probably arising from a faster internal clock. In the task testing 
durations in the milliseconds range, there was no difference between groups, reinforcing the idea of partially 
independent mechanisms for short (ms) and longer (secs) intervals and replicating previous  evidence37.

Conclusions
A precise timing perception in the millisecond scale is crucial in perceiving and acting on the continuously 
changing environment. It has been suggested that this ability is automatic and allows complex human behaviours 
including speech perception and speech performance, music, driving, and many sports. The results of this study 
showed that children and adolescents with ADHD have a severe precision (thresholds) deficit in the duration 
perception of milliseconds (around 0.5 s) auditory stimuli. Time perception for relatively longer and more 
cognitively controlled stimuli was unimpaired. Although, with the current results, we cannot explain why the 
temporal perception of short stimuli is impaired in our sample with ADHD, it is surprising how such a simple and 
fast (4-min) psychophysical test succeeds in differentiating the two groups (LBF = 1.9). Moreover, while timing 
thresholds had a relatively low sensitivity power (60%), they turned out to have a good specificity (85%) level and 
were able to correctly classify 72.5% of cases. Finally, the timing thresholds deficit was resistant to the statisti-
cal controls of general but important covariates such as age, sex and non-verbal IQ, promoting it as a potential 
easy-to-administer tool for future studies. A better comprehension of time perception abnormalities in ADHD 
may give new insights in the neurological bases of the disorder. Furthermore, it may have relevant diagnostic 
and treatment implications. Understanding the functional consequences of these specific deficits in everyday 
life, in combination with other ADHD symptoms (i.e. impulsivity), may help to focus interventions on more 
specific goals, improving the clinical care of youth with ADHD. Moreover, as ADHD and autism might represent 
a continuum, sharing many pathophysiological  features39, it would be interesting and potentially relevant to test 
whether both clinical conditions also share a similar pattern of deficits in time perception.
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