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It is well known that recent sensory experience influences perception, recently demonstrated by a phenomenon termed “serial
dependence.” However, its underlying neural mechanisms are poorly understood. We measured ERP responses to pairs of
stimuli presented randomly to the left or right hemifield. Seventeen male and female adults judged whether the upper or
lower half of the grating had higher spatial frequency, independent of the horizontal position of the grating. This design
allowed us to trace the memory signal modulating task performance and also the implicit memory signal associated with
hemispheric position. Using classification techniques, we decoded the position of the current and previous stimuli and the
response from voltage scalp distributions of the current trial. Classification of previous responses reached full significance
only 700ms after presentation of the current stimulus, consistent with retrieval of an activity-silent memory trace. Cross-con-
dition classification accuracy of past responses (trained on current responses) correlated with the strength of serial depend-
ence effects of individual participants. Overall, our data provide evidence for a silent memory signal that can be decoded
from the EEG potential, which interacts with the neural processing of the current stimulus. This silent memory signal could
be the physiological substrate subserving at least one type of serial dependence.
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Significance Statement

The neurophysiological underpinnings of how past perceptual experience affects current perception are poorly understood.
Here, we show that recent experience is reactivated when a new stimulus is presented and that the strength of this reactivation
correlates with serial biases in individual participants, suggesting that serial dependence is established on the basis of a silent
memory signal.

Introduction
As natural scenes are relatively stable over time, the brain employs
computational strategies to exploit spatiotemporal redundancies,
reducing the complexity of perceptual processing. One strategy, first
suggested by Helmholtz (1867) and championed by Gregory (1968)
is to build expectations or priors of the structure of the world from
previous perceptual history and test these against current sensory
input. This concept is well formulized within the Bayesian framework,
where perceptual expectations can be considered priors to be com-
bined with current input (Wolpert et al., 1995; Kersten et al., 2004).

The effects of perceptual history have been long studied, largely
by a technique known as priming, (introduced by Lashley, 1951),

occurring when exposure to one stimulus influences the response
to subsequent stimuli without conscious guidance or intention
(Weingarten et al., 2016). Priming is an important phenomenon
observed in a range of cognitive studies, from linguistics to social
psychology, and particularly in perceptual research (Maljkovic
and Nakayama, 1994; Kristjánsson and Ásgeirsson, 2019). Pri-
ming typically results in improvement in accuracy and reaction
times. However, it has been shown that previous stimuli cannot
only speed and facilitate current perception but also bias responses
away from veridicality. This is particularly apparent with a para-
digm termed “serial dependence,” where responses are strongly bi-
ased toward recent perceptual experience (Cicchini et al., 2014;
Fischer and Whitney, 2014; Cicchini et al., 2017). This bias has
been observed for a variety of basic stimulus features, such as ori-
entation and position (Bliss et al., 2017; Manassi et al., 2018;
Fritsche et al., 2020), as well as for more complex perceptions,
such as numerosity, facial identity, and scene gist (Cicchini et al.,
2014; Liberman et al., 2014; Manassi et al., 2017) and probably
also working memory (Kiyonaga et al., 2017).

The physiological mechanisms underlying serial dependence
are still poorly understood. Many studies emphasize the high-
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level origin of perceptual priors (Kim et al., 2020; Ceylan et al.,
2021) and assume that the priors also act at a high level (Bliss et
al., 2017; Feigin et al., 2021). Others claim, with supporting evi-
dence, that the effects take place at low-level sensory areas (St
John-Saaltink et al., 2016; Cicchini et al., 2021). However, both
models require the existence of memory of the previous stimuli,
either in the form of decaying neuronal activity or as silent activ-
ity reactivated on the specific task. Whether task relevance is nec-
essary to elicit the dependence is still an open question (Manassi
et al., 2018; Bae and Luck, 2020; Kim et al., 2020; Murai and
Whitney, 2021).

EEG-based decoding is a new statistical approach that
attempts to classify properties of the stimulus from distributions
of signals across the scalp (Foster et al., 2016; Wolff et al., 2017;
Bae and Luck, 2018; Noah et al., 2020). Bae and Luck (2019)
demonstrated that information from previous trials may be reac-
tivated in future trials; by activity elicited by the current trial they
decode with reasonable accuracy the orientation of the previous
stimulus. Interestingly, classification was not possible before trial
onset, suggesting that prior stimuli act through activity-silent
synaptic traces that generate an active representation when a
new stimulus is presented. Similarly, Barbosa et al. (2020) illus-
trated the reactivation of an activity-silent trace in monkey
prefrontal cortex and in human brain, analyzing a signal that
influences spatial location in a classic memory saccade task.

In the current study, we looked for neural representations of
priming effects in EEG recordings using support vector machine
classifiers. We chose the serial dependence paradigm as this leads
to response biases, which should affect classification. We show
that the response to previous stimulus could be decoded from
the response to the current one. Importantly, models trained
on current responses decoded the previous trial responses
robustly, and decoding accuracy correlated with serial de-
pendence effects in individual participants, establishing a
link between behavioral outcome and classification metrics
of recent experience. These findings demonstrate that prior
stimulation manifests as reactivation of a neural trace and
that this reactivation is crucially linked to serial dependence
effects in behavior.

Materials and Methods
Participants
Eighteen healthy adults (10 females, age range, 25–34 years; mean,
27.1 years; SD = 2.5 years), all with normal or corrected-to-normal
vision, voluntarily participated in the experiment. All participants
provided written informed consent. Sample size estimation was
based on similar decoding studies (Foster et al., 2016). One partici-
pant was excluded from analysis from preprocessing because of ir-
reconcilable noise in the EEG data. The experimental design was
approved by the local regional ethics committee (Comitato Etico
Pediatrico Regionale—Azienda Ospedaliero-Universitaria Meyer—
Firenze, FI) and is in line with the Declaration of Helsinki for ethical
principles for medical research involving human subjects.

Stimuli and apparatus
The stimuli appeared on a Display11 LCD Monitor (120Hz, 1920 �
1080 resolution, Cambridge Research Systems), gamma corrected,
placed 70 cm from the eyes. The stimulus was a briefly presented
(8.3 ms) grating patch consisting of two vertical gratings, one on the
upper part of the screen, the other on the lower part. The gratings
appeared randomly on the left or right half of the screen, inner bound
3° from the fixation dot (32° height, 16° width, 50% contrast, random
phase). The gratings had a fixed spatial frequency of 1 c/degree and
1.1 c/degree (10% difference), randomly presented either on the
upper or lower half of the screen.

Procedure
A white fixation dot was present in the center of the display during the
whole experiment. Each trial began with a voluntary button press, which
initiated stimulus presentation after a pseudo-random time interval,
ranging from 16 to 833ms. The delay minimized stereotyping of atten-
tion. The highly visible grating patches were presented either on the left
half or right half of the screen, at random. Participants gave a verbal
response after at least 1 s after stimulus presentation, recorded by the
experimenter. The long delay was introduced to strengthen the mem-
ory trace and to have a large interval of stable EEG recording with no
task related interference. After responding, participants could initiate
the following trial by a voluntary button press (average trial length,
3.32 s 6 0.58 s STD). The task was a two-alternative forced-choice
discrimination, where participants chose which grating had higher
spatial frequency (Fig. 1a). Each participant completed 648 trials.

EEG acquisition
EEG data were collected on a Nautilus Research headset (g.tec) at a sam-
ple rate of 500Hz with no online filtering. The ground electrode was
placed on the center of the head. The data were referenced online to a
unilateral electrode placed behind the left ear. Activity was measured
from 32 gel-based active electrodes (g.LADYbird technology) arranged
according to the 10/20 system. Impedance was kept below 50 kV.

EEG preprocessing
Offline EEG preprocessing was performed in MATLAB (MathWorks)
with custom code. EEG data were referenced to the common average
reference and filtered with a finite-impulse response lowpass filter
(Chebyshev window, 128th order, stopband 25Hz, side lobe magni-
tude factor 30 dB). Epochs were extracted aligned to stimulus pre-
sentation composed of a segment of data from �500ms to 1800ms
after the stimulus. Epochs were visually inspected for motor artifacts
and wireless failure of signal transmission (manual rejection of
1.2 6 0.2% STD of data across subjects). Ocular artifacts were
removed through blind source separation with independent compo-
nents analysis (ICA) decomposition (Jung et al., 2000).

Data analysis
Psychophysics. We examined the behavioral data for the individual

participants. We applied signal detection theory (SDT) to discern sensitiv-
ity and criterion (Fig. 1). Sensitivity was measured with d’, given by the z-
transform of hit rate minus the z-transform of false alarms. Criterion (c)
was given by the sum of the z-transform of hit rate and the z-transform of
false alarms. The psychophysical measure of serial dependence was
defined as the difference in criterion when the previous response was up
from when it was down. Receiver operating characteristics (ROCs) curves
plot the values of the proportion of correct responses against the propor-
tion of false alarms for individual participants. We show the best-fitting
(Least Square Estimation) sensitivity curve for the average participant.

Decoding. The major analysis of this article was the decoding of the
EEG signal, largely based on the methods in Bae and Luck (2019). We
decoded multiple conditions of trials, the horizontal position of the stim-
ulus (current hemifield), the vertical position of the current stimulus
(current target), the horizontal and vertical position of the previous target
(previous hemifield and previous target), the response of the participant to
the current stimulus and to the previous stimulus. For each time point
taken from the –500 to 11800ms interval from stimulus onset, the aver-
age potential across the 32 electrodes was decoded independently.

Before decoding, the signal was down sampled to 50Hz, resulting in
150 time points per trial. In each decoding pipeline, trials were divided
into two conditions (such as stimulus left and stimulus right; response
up and response down; previous target up and previous target down,
etc.), regardless of other stimulus characteristics. Trials were randomly
assigned to 10 sets per condition (with an average of 15 trials per set,
leaving out from 1 to 9 random trials per condition as the number of tri-
als were not always multiples of 10). Trials in each set were averaged
(from here on, this average is referred to as sample) to increase the sig-
nal-to-noise ratio, a common method used by previous studies (Foster et
al., 2016). Although this means averaging the EEG signals from very

8818 • J. Neurosci., November 23, 2022 • 42(47):8817–8825 Ranieri et al. · Evidence of Serial Dependence from Decoding of Visual Evoked Potentials



different conditions and sources, it allows sufficient numerosity to
address the specific decoding. We partitioned the data into training and
test sets; eight samples per condition were assigned to the training set
and two samples to the test set (where each sample is the average of trials
as explained above). The decoding for each time point was performed
with a five-fold cross-validation procedure, whereby four samples were
used for testing in each fold. This ensured that all samples were used
both in the training set and in the test set as standard procedure for data-
sets with low sample size. Each time a new model was trained and tested
with no memory of previous models. We repeated the classification pro-
cedure generating samples by averaging trials with the same spatial prop-
erties (e.g., only up left trials). We reproduced the method with two
strategies. First, we decoded labels by training and testing on spatially
homogeneous samples, reproducing very comparable results to the main
classification procedure; second, we performed separate classifications
for each spatial location (e.g., classifying previous hemifield only for up

left trials), again obtaining similar results. However,
given that this latter procedure did not give stable
results for the low numerosity of the sets, we report
here only the analysis with samples from averages of
heterogeneous stimuli.

The classification used binary Support Vector
Machines, implemented with a linear kernel via the
MATLAB function fitcsvm. The classifier found the
best margin for classification based on voltage values at
32 electrode locations. The model was then used to pre-
dict the classes of samples in the test set. This procedure
was repeated for 1000 iterations. In each iteration the
trials were assigned randomly to the 10 buckets so that
samples were not biased because of lucky splits of the
data. Given the 10-fold cross-validation procedure
where four samples were tested, the 100 reiterations
lead to a total of 40,000 tests for each final decoding val-
ues. The whole procedure was performed for each inde-
pendent time bin of 20ms duration, producing a
measure of decoding accuracy in time. Predictions were
compared with true labels, yielding percentage classifi-
cation accuracy by averaging the number of correct pre-
dictions across iterations and cross-validations. Data
from participants were averaged to obtain a mean time
course of decoding accuracy with the associated SE.

We computed topographical maps associated with
each decoding instance. The relevance of each elec-
trode in the classification (referred in the literature as
activation pattern; Min et al., 2016) was calculated by
multiplying the signed weights of the trained model by
the voltage of the samples of the corresponding test
set. The activation pattern was then averaged through
all iterations of the decoding instance. This procedure
produced an N � Mmatrix, where N is the 32 electro-
des, andM is the 150 time points. For visualization, we
averaged activation patterns across 62 timepoints
(100ms windows) and displayed the topographies
with consistent color mapping and no normalization.

Generalization matrices. To verify the similitude
in time of the signal that led to decoding, we computed
a temporal generalization matrix for each decoding
instance (King and Dehaene, 2014). The procedure is
an extension of the method described above. The clas-
sifier trained on a particular time point was tested on
all 150 time points. The result is a measure of decoding
accuracy as a 150� 150 matrix.

The statistical significance of decoding was assessed
in the 2D matrices by a two-tailed t test against the null
hypothesis of chance classification independently for
each time point (50% for the case of binary classifica-
tion). Each classification procedure at each time point is
conceptually independent. However, given that low-pass
filters at 25Hz induce correlations between 40ms time
bins, we also introduced a threshold for cluster size of

time bins when at least 3 � 3 points had classification accuracy with a p
value lower than 0.05. Clusters of 3� 3 points were identified by simulating
the null hypothesis with a label shuffle (n = 2000). This produced a distribu-
tion of clusters of contiguous significant time points in the null hypothesis,
which allowed us to define a threshold for cluster size as the 95th percentile
of that distribution. To visualize cross-participant decoding significance, we
highlighted the perimeter of the areas that surpassed the t test. The statistical
annotation for classification accuracy plots across time (Figs. 2, 3) corre-
spond to the diagonal of the respective generalization matrix. For graphical
visualization only, we smoothed the decoding accuracy with a Gaussian
temporal filter of 72ms time constant.

We also computed additional matrices to verify the cross-conditional
generalizability of decoding, ensuring that the training and test sets were
independent, and no signal participated in the individual averages of
both sets. We trained the classifier on data split according to previous
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Figure 1. Responses are biased toward recent stimuli and responses. a, Schematics of the experimental para-
digm. Voluntary button press starts the trial, then two vertically stacked vertical gratings appear on the left or right
side of the screen at random. Participants are prompted to respond verbally after waiting at least 1 s, deciding
which of the two gratings had higher spatial frequency. After a pause of at least 2 s participants could initiate the
following trial. b, Serial dependence effect based on previous stimulus. Squares indicate mean criterion (z-scored,
positive values indicate higher tendency toward responding up vs down). Criterion for previous stimuli up is statisti-
cally different from criterion for previous stimuli down (p = 0.04, BF = 1.8). Error bars indicate Standard Error of
the Mean (SEM) across the 17 participants. The asterisk indicate a p value lower than 0.05. c, Serial dependence
effect based on previous response. Criterion for previous responses of up is statistically different from criterion for
previous responses of down (p = 0.003, BF = 16). The 2 asterisks indicate a p value lower than 0.01. d, Individual
results, plotted as a proportion of hits against false alarms; red points show average. Sensitivity is indicated by the
distance from the dashed line, criterion by the angle from the dotted line. The circles (red and black) show perform-
ance when the previous target was different from the current trial, triangles when it was the same. The blue curve
indicates the best-fitting ROC curve of the average participant. e, Proportion of hits plotted against false alarms as
in d, with respect to the response rather than the stimulus congruency of the previous trial.
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response labels and tested the model on current responses. We also did
the inverse classification, training on current labels and testing on previ-
ous labels. The resulting accuracy is a measure of similarity between the
current perceptive signal and the memory signal of the previous trial.

Correlations. Average classification accuracy of multiple decoding
conditions (current response, previous response, current response
trained on previous response, previous response trained on current
response) was correlated against the magnitude of individual serial de-
pendence. Serial dependence was calculated as the difference in criterion
calculated on trials with a previous response up and trials with a previous
response down. We computed Pearson’s coefficients and p values against
the null hypothesis of no significant covariance between serial depend-
ence and decoding of previous response, as well as Bayes factors (BFs)
for the likelihood ratio of the alternative hypothesis.

Results
Behavioral results
Participants performed a two-alternative forced-choice visual target
discrimination task (Fig. 1a) while we recorded EEG scalp

potentials. We first demonstrated psychophysical serial depend-
ence, confirming that behavior at trial n was influenced by trial n-1.
We calculated criterion using SDT, by summing hits and false
alarms, resulting in a measure of bias toward responding up. We
calculated criterion separately for when the previous target was
congruent or incongruent (Fig. 1b), verifying that serial depend-
ence occurred in this experiment. Despite variability among partic-
ipants, there was a significant positive effect of previous target on
criterion, as upper targets led to increased tendency of responding
up in the following trial and vice versa (mean difference = 0.12,
SE = 0.05, t = 2.25, p = 0.037, BF = 1.8). Because the task used a
two-alternative forced-choice paradigm, with targets at discrimina-
tive threshold, we expected the effect to be stronger when consider-
ing previous responses instead of previous targets (Fig. 1c). Indeed,
responses influenced future behavior more than targets (mean dif-
ference = 0.29, SE = 0.08, t = 3.51, p = 0.003, BF = 16).

Figures 1, d and e, show individual results illustrating the
effect in typical ROC curves. They plot the proportion of hits
(correct responses) against false alarms (incorrect responses)
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separately for each participant (red points show average).
Sensitivity is given by the distance from the dashed line, cri-
terion by the rotation across the best-fitting ROC curve of
the point. Points sitting on the negative diagonal (dotted
line) show unbiased responses, with criterion of 0, while
points angled clockwise from the diagonal refer to a tendency
to respond up. The circles refer to incongruent trials when
the previous trial stimulus (Fig. 1d) or response (Fig. 1e) was
different from the current trial, and triangles refer to congru-
ent trials when it was the same. The general effect of similar
past stimuli or response was to rotate the responses in crite-
rion with no change in sensitivity. This is particularly evident
when the plots are based on previous response rather than
stimulus (Fig. 1e, red arrow). As the target position varied
randomly from trial to trial, no serial effect was expected for
sensitivity (distance from the dashed line), and none was
found (mean difference = 0.03, SE = 0.04, t = 0.76, p = 0.46,
BF = 0.31).

To control for potential confounds, we verified that future
stimuli and responses did not modulate participants’ criterion in
the current trial. There was no effect of future target (mean dif-
ference = �0.09, SE = 0.06, t = 1.70, p = 0.11) and no effect of
future response (mean difference = –0.04, SE = 0.06, t = 0.62, p =
0.54) on criterion, meaning that response biases based on previ-
ous responses cannot be explained by autocorrelation in the
decision.

Event-related potentials
The event-related potential (ERP) was strong and reliable at all
electrodes, with the dynamics depending on electrode position.
For illustrative purposes we show the ERPs recorded at PO3,
where the difference between conditions was strongest. The
ERPs for stimuli presented to the right and to the left visual
hemifield (Fig. 2a) show major differences at intervals of 40–
200ms and 320–1500ms (N1 amplitude effect, window = 130–
170ms, electrodes = PO3, mean of the difference = 5.29mV, SE =
0.25, p , 0.001), as to be expected given the lateralized visual
field representation. ERPs to different target vertical positions
diverged at late epochs (;600–1800ms, Fig. 2b), with smaller
differences. This is to be expected given the smaller difference in
dipole (dorsoventral representation of calcarine sulcus) and the
task being near discrimination threshold.

Decoding results
We used decoding techniques to search for neurophysiological
traces in both the current and the previous stimuli. We first
decoded the hemifield (task-irrelevant feature) of the current
stimulus from stimulus activity, a relatively simple task given the
retinotopic or spatiotopic representation of much of visual cor-
tex. We also decoded the target of the current presentation, a
more difficult task, as the target was defined by subtle differences
in spatial frequency at threshold detection. We then attempted to
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decode the previous stimuli from the current response, both the
hemifield and the target, to search for memory traces of previous
stimulation related to serial dependence.

We trained the classifier to classify trials labeled by hemifield
of stimulus presentation (regardless of target position), for con-
secutive intervals of 20ms. These classifiers were used to predict
the hemifield of left-out averaged trials (see above, Materials and
Methods). The hemifield of the grating patch was decoded
with high accuracy, contingent on stimulus presentation [sig-
nificant intervals = (80–1160, 1200–1320ms), peak = 0.93,
peak latency = 160ms]. Decoding accuracy was strongly sig-
nificant when the ERP difference for the two sets of stimuli
was strongest (Fig. 2a). The classifier was never above chance
before stimulus presentation.

We computed activation maps related to current-hemifield
decoding by projecting classification weights onto the scalp dis-
tribution (Fig. 2c, bottom images). The resulting topographic
maps (saturated yellow or blue colors) indicate how relevant the
single electrodes were for accurate discrimination of the current
hemifield. These maps show that the decoder relies on occipito-
parietal activity to label left and right trials.

After confirming that the algorithm decoded well the strong
signals associated with the hemifield of presentation, we repeated
the procedure for the vertical position of the target, the feature
related to the perceptual task. The dynamics of the ERP differen-
ces on vertical target position (illustrated in Fig. 2b for the PO3
electrode) were slightly different, as expected from dipole orien-
tation (Di Russo et al., 2003). Although the ERPs were more sim-
ilar for the two target positions at all electrode positions, the
classifiers were able to decode the position from scalp topogra-
phy. Decoding was not as strong as for hemifield, which was to
be expected as stimuli had equal high contrast and were close to
75% discrimination performance, but it was significant [signifi-
cant intervals = (840–920, 960–1080, 1100–1160, 1640–1700,
1720–1760 ms), peak = 0.53, peak latency = 1620ms], with accu-
racies in line with those of previous studies (Foster et al., 2016;
Bae and Luck, 2019). Interestingly the significant classification
occurs quite late, in correspondence again to the greatest differ-
ence of the ERPs.

We then attempted to classify stimuli of the previous trial
from ERP distributions of the current trial. We first decoded
the hemifield of the previous stimulus presentation, labeling
the current EEG activity with the hemifield of the previous
trial. Decoding was successful after ;100ms from stimulus
presentation, for quite long periods [Fig. 2e; significant inter-
vals = (100–280, 340–420, 680–820, 1000–1200, 1220–1260,
1300–1440, 1560–1660, 1680–1720ms), peak = 0.53, peak la-
tency = 1160ms]. This implies that a memory trace of the pre-
vious presentation, possibly related to an expectation of where
the next trial will appear, remains for at least one trial.
However, it was not present before stimulus onset or during
the major visual responses. We further divided the data on the
basis of hemifield position but found no significant change in
decoding for consecutive stimuli that were in the same or dif-
ferent hemifields. The scalp maps at the bottom of Figure 2c
highlight a more centroparietal activation compared with
maps of the current target or hemifield.

We then attempted to decode the vertical position of the pre-
vious target from the current EEG (Fig. 2f). Classification was
not possible, never reaching significance. This is perhaps not sur-
prising, given that classifying the current target was itself very
weak, consistent with the near threshold performance. We there-
fore used the same technique to decode the responses to the

stimuli, Figure 3a shows that labeling trials with current par-
ticipant responses rather than with the target position led to
strong decoding after stimulus presentation [Fig. 3a; signifi-
cant intervals = (100–220, 280–440, 460–1800ms), peak =
0.56 at 1800ms].

Figure 3b shows the temporal generalization matrices for the
classification of current responses, showing how training at vari-
ous times generalizes to the different testing times. Temporal
generalization is a measure of how well models built at a certain
time interval can accurately classify voltage distributions at all
time, assessing the evolution of the signal and its relative stability
(King and Dehaene, 2014). Maximum coding clearly occurred
along the diagonal (when training and testing times coincide)
and fell off symmetrically and quite rapidly away from the diago-
nal, consistent with a dynamic model. No decoding was signifi-
cant before zero, but good response decoding was apparent soon
after stimulus appearance. The activation map here shows an
early frontal activation and a later occipitoparietal activation.
The later occipitoparietal activation may be driven by feedback
from frontal areas, modulating the neural representation of the
stimulus.

Encouraged by the successful decoding of current responses,
we attempted to classify the responses of the previous trials from
current activity (Fig. 3c). Decoding was reliably .50% after
700ms and reached statistical significance at several points
[significant intervals = (700–740, 820–880, 1040–1180, 1760–
1800ms), peak = 0.52, latency = 1100ms]. Scalp maps in
Figure 3 show an earlier activation of occipitoparietal electrode
locations compared with the current response and a weaker con-
tribution from frontal sites. Figure 3d shows the temporal gener-
alization matrix. Decoding shows a clear square pattern, pointing
to generalization across time, consistent with static decoding,
which may be expected from a memory signal. Interestingly, the
previous response decoded from the current response is signifi-
cant only very late, again consistent with decoding of a memory
signal.

We measured decoding separately for stimuli that were
spatially congruent or incongruent (in horizontal position).
Decoding was similar in both cases, consistent with a gen-
eral memory trace. In addition, as a standard sanity check
(Maljkovic and Nakayama, 1994), we attempted to classify
future responses from current activity. This was completely
impossible, with decoding accuracy always below 51%, dis-
carding possible confounds from response autocorrelation
or other artifacts.

Cross-condition coding
The previous section showed that previous response labels can
be decoded from scalp potentials of the current trial, suggesting
that a trace of the previous response is represented in the current
one. We examined further the traces common to both current
and previous responses by measuring cross-condition coding,
training the support vector machine on previous responses and
testing on the current (and vice versa). This cross-condition
measures how well the previous response model predicts the cur-
rent response.

Figure 3e shows the results for training on the previous
response (using current ERP distributions) and testing the
current responses. The decoding is not significant before stim-
ulus onset and rises to significance only late after stimulus
presentation [significant intervals = (880–1260ms), peak =
0.52, latency = 920ms]. Figure 4f shows the generalization
matrix using the model trained on the previous response to
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decode the current response. The matrix again shows good
decoding not only along the diagonal but a square-like gener-
alization pattern consistent with static decoding, as may be
expected from a memory signal.

The scalp maps of cross-condition decoding share many simi-
larities with those for previous response temporal generalization,
as to be expected given that activation maps are highly depend-
ent on training model coefficients. We also tested the reciprocal
condition, training on current response and testing on previous
response, finding very similar results both for the qualitative
assessment of the generalization matrix and for the statistical
results of the diagonal [significant intervals = (760–800, 840–
1280ms), peak = 0.52, latency = 1140ms].

Linking decoding to behavior
The successful decoding of previous responses, particularly in
the cross-condition, suggests that a consistent component of the
actual response is driven by the previous response, along the
lines suggested by serial dependence studies. However, there is
to date no evidence that the decoding represents a functionally
useful signal. We investigated the possibility that the decoding of
the memory signal shown in Figure 3 could have a perceptual

consequence by correlating the decoding accuracy of previous
stimuli with the magnitude of serial dependence of individual
participants.

Figure 4 plots the average poststimulus decoding (from 0 to
1800ms) against the serial dependence measure for all partici-
pants for four different conditions. We first checked whether ac-
curacy of decoding current responses trained on current
responses correlated with serial dependence (Fig. 4a). There was
a tendency toward correlation, but this was not significant (r =
0.33, p = 0.19, BF = 0.3). We then checked whether decoding of
previous responses, trained on previous responses, correlates
with serial dependence; again, this measure did not correlate sig-
nificantly (r = 0.29, p = 0.26, BF = 0.3). However, the two cross-
conditions of decoding produced significant correlations for
training on previous and testing on current responses Fig. 4c, r =
0.64, p = 0.006, BF = 7.6) and training on current and testing on
previous responses (Fig. 4d, r = 0.52 p = 0.025, BF = 2.2). As
decoding accuracy for current stimuli also showed a tend-
ency to correlate with serial dependency, potentially reflect-
ing an intervening variable driving both decoding and serial
dependence (e.g., such as attention), we remeasured the cor-
relations with decoding of past responses after regressing out
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r
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r
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Figure 4. Shared EEG activity between the past and the present activation predicts serial dependence effects. Correlations across participants (n = 17) of serial dependence effects. The ab-
scissa plots serial dependence of each participant, calculated as the difference in criterion between trials where the previous response was the same as the current one and those when it was
different. The ordinates show the average decoding accuracy over the poststimulus window (0–1800ms) for different decoding conditions. Statistics shown are two-tailed Pearson’s correlation
coefficient r and p value against the null hypothesis of no correlation. Line of best fit in blue (dashed for correlations with p , 0.05). a–d, The ordinates show decoding accuracy of current
responses trained on current responses (a), decoding of previous responses trained on previous responses (b), cross-condition decoding of current responses trained on previous responses (c),
and cross-condition decoding of previous responses trained on current responses (d).
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the dependence on current decoding. This did not change
the pattern of results, training on previous response and test-
ing on current response (Fig. 4c), and vice versa (Fig. 4d);
both remained significant (p = 0.020 and 0.050, respectively),
whereas training and testing on previous responses remained
insignificant (p = 0.22).

Finally, we verified that for the prestimulus period (from
�500 to 0ms) there was no correlation between serial depend-
ence and either of the cross-condition decoding conditions
(training on previous response and testing on current response,
r = 0.36, p = 0.16, BF = 0.5; decoding training on current
response and testing on previous response, r = 0.34, p = 0.19,
BF = 0.6).

Discussion
This study used classification techniques to characterize the neu-
rophysiological substrate of serial dependence of response biases.
From the scalp distribution of EEG signals in response to visual
stimuli, we trained classifiers to decode the target stimuli, both
their horizontal position (task irrelevant) and their vertical posi-
tion (task relevant), as well as responses to the targets. The classi-
fiers decoded the horizontal position well, both of the current
and the previous stimuli. We were also able to classify the cur-
rent target and the current and previous responses from the
current EEG distribution, suggesting that the EEG included a
representation of the previous stimulus leading to the response.
The most successful classification used a cross-condition para-
digm, training the classifier with labels from the previous response
and testing on the current response (and vice versa). Importantly,
the accuracy of this cross-condition classification correlated
strongly with the psychophysically measured magnitude of
serial dependence of participants, strongly supporting the
possibility that the neural traces decoded by the classifiers corre-
spond to a neural representation of an expectation associated
with serial dependence.

Our research is consistent with and expands on recent
research on by Bae and Luck (2019), who showed that current-
trial EEG contained information about the orientation of the pre-
vious trial. They concluded that serial dependence may be driven
by the reactivation of memory traces but provided little evidence
for a direct relationship between serial biases and the decoded
traces. Similarly, Fornaciai and Park (2020) observed memory
trace reactivations in a numerosity discrimination task subject
to serial dependence, but again with no direct evidence that
the memory traces were connected with serial dependence.
The strong correlations we found between accuracy of decod-
ing and magnitude of serial dependence (across participants)
strongly suggest that the trace of the representation of the pre-
vious target modulates the response to the present stimulus
and participates in serial dependence perceptual effects.

Previous research (Barbosa et al., 2020; Fornaciai and Park,
2020) has suggested that perceptual history is communicated
through activity-silent signals, not observable before the cur-
rent stimulus is presented. In our study, decoding the previous
hemifield (task-irrelevant feature) was not possible before
stimulus onset, consistent with activity-silent traces. Similarly,
decoding of previous responses (training and testing on previ-
ous responses) was significant only after presentation of the
current stimulus.

One concern for many of these studies may be that classifica-
tion decoders may be influenced by stereotypical eye position
signals in the orbits (e.g., toward the target), which generate an

electrical dipole that survives ICA oculomotor detection. In our
case, it is unlikely that this potential signal made a major contri-
bution as we obtained similar results using only parietal and
occipital electrodes. Furthermore, we observed similar decod-
ing dynamics for horizontal and vertical positions of the pre-
vious trial, whereas any hypothetical eye-movement pattern
would be very different. Another point to mention is that par-
ticipants waited for at least 1 s before responding verbally. We
cannot know if this affected the results and if paradigms with-
out this pause may prove less effectual, given that some evi-
dence suggests that serial dependence requires time to build
up (Bliss et al., 2017).

Under the conditions of our experiment, we were able to
decode previous responses from current EEG activation, but not
previous targets. Similarly, decoding of current responses was
stronger than the decoding of current targets. Several reasons
could contribute to this result. First, the stimuli were particularly
weak at response threshold (75% correct). Second, it is likely that
the response to the target represents the neural representation of
the target better than the target itself does, even when it is per-
ceived incorrectly (on 25% of trials). This would be consistent
with Ress and Heeger’s (2003) observation that the BOLD
response in early visual cortex is better predicted by the partic-
ipant response than by the stimulus itself. In addition, percep-
tual decisional mechanisms that lead to the responses could
contribute to the decoding. Finally, the actual motor response
may also contribute to the decoding, although using a verbal
rather than a button-press response should have minimized
this motor contribution. Unfortunately, our data do not allow
us to irrefutably distinguish between all these signals in form-
ing the memory trace that promotes serial dependance; more
complex experimental designs are required to address these
points.

Activation maps give some information about the source
of the memory signal. Although dipole localization was not
possible with only 32 electrodes, the difference in dynamics
in the activation patterns between current response decoding
and cross-condition decoding is informative. Frontal activa-
tion became prominent only very late in cross-condition de-
coding, although it was very strong at 200ms after stimulus
onset for the current response decoding. This may suggest
that the memory signal decoded from previous responses is
mainly localized in the occipitoparietal cortex, consistent
with studies that support that serial biases act directly on the
current percept (Cicchini et al., 2017; Manassi et al., 2018;
Alamia and VanRullen, 2019; Cicchini et al., 2021).

To highlight the shared component of decoding of previous
and current representation, we tested cross-condition decoding,
which is training on previous responses and testing on current
ones, or vice versa. This led both to stronger decoding over
longer intervals (compare Fig. 3c and e), and to strong and
highly significant correlations with behavioral measures of
serial dependence (Fig. 4c,d). Importantly, only the response
after the stimulus correlated with psychophysical serial de-
pendence, showing it is not artifactual.

A range of theoretical and empirical work in both auditory
and visual perception suggests that the memory of the previous
stimulus may be transmitted via an oscillatory signal (Alamia
and VanRullen, 2019; Friston, 2019; Zhang et al., 2019; Bell et al.,
2020). For example, Bell et al. (2020) showed that in judging the
gender of faces, oscillations of specific frequencies in the low beta
range were associated with serial dependence; faces preceded by
a male face showed oscillations in reporting criteria;17Hz, and
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those preceded by female faces showed oscillations at 14Hz.
Similarly, Ho et al. (2019) reported biases in auditory perception
that oscillated at ;9Hz only for trials preceded by a target tone
to the same ear, strongly implicating neural oscillations in pre-
dictive perception. Both these studies showed that the memory
signal is silent and reactivated only if the current stimulus is
congruent with the past experience. This is consistent with
our observation of reactivation of the memory signal only af-
ter stimulus presentation. Unfortunately, the current study
was not designed to measure oscillations, but future studies
could attempt to study the oscillatory dynamics of predictive
signals by EEG decoding, monitoring the dynamics of mem-
ory traces.

In conclusion, our study provides evidence for a neuro-
physiological signal related to perceptual priors generated by
the response to the previous stimuli. The ability of classifiers
to generalize across previous and current conditions indicates
that the two representations coexist in the EEG scalp potential
in the current trial, consistent with a neural echo (Chang et
al., 2017; Ho et al., 2019) of recent experience during stimulus
processing. That the accuracy of decoding the signals of the
previous responses was tightly related to serial dependence
effects suggests that the intensity of prior signals drives the
predictive processes. This elaborate mechanism presumably
serves to enhance perceptual efficiency and to help preserve
continuity of perceptual experience.
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