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Abstract  16 

We have previously shown that after few seconds of adaptation by finger-tapping, the 17 

perceived numerosity of spatial arrays and temporal sequences of visual objects displayed 18 

near the tapping region is increased or decreased, implying the existence of a sensorimotor 19 

numerosity system (Anobile et al., 2016). To date, this mechanism has been evidenced only 20 

by adaptation. Here we extend our finding by leveraging on a well-established covariance 21 

technique, used to unveil and characterize “channels” for basic visual features such as colour, 22 

motion, contrast, and spatial frequency. Participants were required to press rapidly a key a 23 

specific number of times, without counting. We then correlated the precision of reproduction 24 

for various target number presses between participants. The results showed high positive 25 

correlations for nearby target numbers, scaling down with numerical distance, implying 26 

tuning selectivity. Factor analysis identified two factors, one for low and the other for higher 27 

numbers. Principal component analysis revealed two bell-shaped covariance channels, 28 

peaking at different numerical values. Two control experiments ruled out the role of non-29 

numerical strategies based on tapping frequency and response duration. These results 30 

reinforce our previous reports based on adaptation, and further suggest the existence of at 31 
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least two sensorimotor number channels responsible for translating symbolic numbers into 32 

action sequences. 33 

 34 

Introduction  35 

Humans share with many animals a primitive non-verbal number system encoding the 36 

number of objects in space and events in time (Dehaene, 2011). The capacity to estimate 37 

number rapidly but imperfectly is thought to be a primary perceptual attribute, often termed 38 

the  number sense (Burr & Ross, 2008). The past few decades have accumulated much 39 

evidence for the existence of the number sense. Many studies show that the sense of number 40 

is truly general, transcending space and time, as well as modality and format (Arrighi et al., 41 

2014; Burr et al., 2018; Togoli et al., 2021). More recently, numerosity has been shown to 42 

interact strongly with action, leading to the idea of a sensorimotor number system, 43 

incorporating action, and its interaction with sensory systems (Anobile et al., 2016, 2021).  44 

Both physiological and psychophysical studies support the existence of a sensorimotor 45 

number system. Adaptation studies provide strong evidence: participants first tap 46 

continuously with their index finger for a few seconds, either rapidly or slowly, then estimate 47 

the numerosity of a dot array presented near the adapted region: adaptation to fast tapping 48 

causes underestimation and slow tapping overestimation (Anobile et al., 2016, 2020; 49 

Maldonado Moscoso et al., 2020). Motor adaptation induces similar effects on sequential 50 

visual and auditory stimuli (Anobile et al., 2016; Togoli et al., 2020), consistent with the 51 

existence of a generalized system linking motor and sensory signals to encode numerosity 52 

(Anobile et al., 2021; Burr et al., 2021).  53 

Electrophysiological studies in primates also point to the existence of a specific neural 54 

substrate for counting a small set of actions. In a seminal paper Sawamura at al. (2002) 55 

trained monkeys to repetitively make five identical movements, then switch to a different 56 

movement, in a cyclical fashion: neurons in the posterior parietal cortex showed selectivity to 57 

the number of self-generated actions, whatever the action. Kirshhock and Nieder (2022) 58 

trained crows to peck a specific number of times (1 to 5). Neurons in the telencephalon were 59 

shown to be tuned to the impending number of self-generated actions, during the phase 60 

between the disappearance of the target to the onset of motor reproduction. The activity of 61 

these neurons predicted the behavioural performance and was independent of both stimulus 62 

format (dots or digits) and of the temporal characteristics of the motor responses. Each tuning 63 
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function peaked at a given preferred numerosity, with activity scaling down with numerical 64 

distance. Overall, these cells in the crow brain could constitute the neural substrate 65 

subserving the transformation of sensory inputs into a given quantity of numerical actions, 66 

possibly a similar mechanism to that driving the motor number adaptation effects in humans 67 

(Anobile et al., 2016).  68 

Although motor adaptation has revealed a clear link between action and numerosity 69 

perception, this is the only technique used so far to investigate the interaction in humans. The 70 

aim of the current study is therefore to expand and generalize our previous findings, using a 71 

different psychophysical technique that exploits individual differences in reproduction 72 

precision (Peterzell & Kennedy, 2016). This technique has been widely used to reveal visual 73 

channels for motion (Morrone et al., 1999), spatial frequency (Reynaud & Hess, 2017; 74 

Simpson & McFadden, 2005), contrast sensitivity (Peterzell et al., 1995; Peterzell & Teller, 75 

1996), color (Peterzell et al., 2000; Peterzell & Teller, 2000) and duration (Rammsayer & 76 

Troche, 2014).  77 

The rationale behind this technique is that performance measures of stimuli detected by the 78 

same mechanism should correlate more between individuals than stimuli detected by 79 

different mechanisms. Figure 1 illustrates the technique by simulation of results in a 80 

numerosity reproduction task if the task were mediated for 1, 2 or 4 numerosity-selective 81 

channels. It assumes intrinsic variability in reproduction precision across participants, 82 

perturbed by additive random noise. The top row simulates results if reproduction of all 83 

numerosities were governed by a single mechanism, rather than a range of numerosity-tuned 84 

mechanisms. The correlation matrix for all pairs of stimuli (Figure 1B) shows no systematic 85 

pattern, only random variations in correlations due to the general noisiness of the channel. 86 

Figure 1C plots the average correlation plotted as a function of numerosity ratio, showing no 87 

dependence on number ratio. Increasing or decreasing the added noise will change the 88 

average correlation, but not create any dependency on numerosity ratio. However, if there 89 

exist mechanisms selective for numerosity, the results are quite different. Assuming just two 90 

mechanisms tuned to low and high numbers (Figure 1D) yields a correlation matrix with 91 

higher correlations between similar numbers (near the diagonal) than dissimilar numbers. 92 

This leads to the clear dependency on numerosity ratio shown in Figure 1E. Similarly, for a 93 

range of numerosity-selective mechanisms like the four shown in Figure 1G, there will be a 94 

strong dependency on numerical distance (Figure 1I). The cases of two and four channels are 95 

difficult to distinguish if the amount of added noise is free to vary. Techniques such as cluster 96 
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analysis and principal component analysis (PCA) can be also applied to study further the 97 

tuning of the channels. 98 

 99 

 100 

Figure 1. Simulation of behaviour with 1, 2 or 4 channels mediating numerosity judgments. 101 
A: 1-channel model shown as a flat tuning function. (B) Predicted correlation matrix between 102 
all pairs of numerosities. There is no systematic variability, only random variations induced 103 
by the noise. (C) Average correlation as function of numerical ratio of dot pairs, showing no 104 
dependency. (D) 2-channel model centred at numerosities 8 and 32, with full bandwidth of 105 
1.45 octaves. (E) Correlation matrix, showing higher correlations near the identity line. (F) 106 
Correlation as function of numerical ratio, showing a systematic falloff with numerical ratio. 107 
(G-I) Same as D-F for a 4-channel model with channels equally spaced in the range between 108 
8 and 32 with full bandwidth of 1.10 octaves.  109 
 110 

Here we applied the interindividual covariance technique to study sensorimotor tuning in 111 

humans, using a number matching task similar to that used by Kirschhock & Nieder (2022). 112 

We measured the precision with which 30 participants could press a key a given number of 113 

times (8-32) without counting, and then correlated performance across all pairs of numbers 114 

(like the simulation of Figure 1). The results clearly demonstrate the existence of 115 

8 16 32
0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

8 16 32
0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

8 16 32
0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t

Numerosity

r

8 11 14 16 21 24 28 3210 13 19

8

11

14
16

21
24
28
32

10

13

19

G                                            H                                         I

Te
st

ed
 N

um
er

os
ity

Tested Numerosity

0.3

0.5

0.7

A                                            B                                         C

C
or

re
la

tio
n

Numerical Ratio
D                                            E                                         F

W
ei

gh
t

Numerosity

8 11 14 16 21 24 28 3210 13 19

8

11

14
16

21
24
28
32

10

13

19

Te
st

ed
 N

um
er

os
ity

Tested Numerosity

C
or

re
la

tio
n

Numerical Ratio

W
ei

gh
t

Numerosity

8 11 14 16 21 24 28 3210 13 19

8

11

14
16

21
24
28
32

10

13

19

Te
st

ed
 N

um
er

os
ity

Tested Numerosity

C
or

re
la

tio
n

Numerical Ratio

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2023. ; https://doi.org/10.1101/2023.10.04.560837doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560837
http://creativecommons.org/licenses/by/4.0/


 5

sensorimotor mechanisms converting symbolic numbers into actions, with correlations 116 

decreasing with numerical distance, like Figures 1F & I.  117 

 118 

Methods 119 

Participants 120 

An a priori power analysis for a correlation test (r) with a medium effect size of r2 = 0.5, and 121 

α=0.05 (one tailed, as positive correlations are expected) and power of 0.9 indicated a 122 

required sample size of 28 participants.  30 participants took part in the fast-tapping condition 123 

(age: average= 25.75, SD=4.5, min=18, max=39) and 29 in the slow tapping condition (age: 124 

average= 25.43, SD=4.04, min=18, max=39). Of these, 18 completed both conditions. The 125 

experimental procedures were approved by the local ethics committee (Commissione per 126 

l’Etica della Ricerca, University of Florence, July 7, 2020, n. 111). The research was in 127 

accordance with the Declaration of Helsinki and informed consent were obtained from all 128 

participants prior to the experiment. 129 

 130 

Stimuli and procedures 131 

Stimuli were generated and presented with PsychToolbox routines for Matlab (ver. R2021a). 132 

Stimuli were white visual digit numbers (8, 10, 11, 13, 14, 16, 19, 21, 24, 28, 32) presented in 133 

the centre of a grey screen (iMac Retina display 27–inch) for 1 s and subtending 5° of visual 134 

angle. Soon after the disappearance of the target digit, participants were asked to repeatedly 135 

press a key as many times the target. In separate sessions, participants were asked to tap as 136 

fast as they could or at a comfortable rate. Participants were all right-handed and performed 137 

the tapping’s with their right hand on a spacebar positioned about 30 cm to the right of the 138 

monitor, to guarantee a comfortable arm position. Following previous studies (Cordes et al., 139 

2001; Whalen et al., 1999), serial counting was prevented by vocal suppression, repeating 140 

aloud the syllable 'ba' (as fast as possible). For each participant, each target number was 141 

presented from 25 to 30 times (for a total of 17183 trials: 8259 and 8924 trials in the fast and 142 

slow tapping conditions), in separate blocks (usually 5) interspaced by pauses of a few 143 

minutes. For those participants who completed both the fast and slow tapping condition, the 144 

two were measured on different days (on average within 3-4 days). Each condition took about 145 

1.5 hours of testing (3 hours for those who completed both). Before the experiment, 146 
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participants were familiarized with the task performing one single block of trials with 147 

feedback (a digit displaying the number of tappings performed).  In this phase 11 trials were 148 

presented, one for each tested number (randomly selected trial by trial). No feedback was 149 

provided during the rest of the experiment. 150 

 151 

Control duration task 152 

A randomly selected sub-sample of 9 participants from the slow tapping condition was 153 

engaged in a duration control task. On each trial, a tone (500 Hz, ramped on and off with 20 154 

ms raised-cosine ramps) was played though headphones, and participants asked to reproduce 155 

its duration by repeatedly tapping on a key while pronouncing the syllable 'ba' as fast as 156 

possible (to suppress counting). The between average tapping frequency rate in the number 157 

task was 3.1 Hz (SD 1.1 Hz) and 3.5 Hz (SD 1.3 Hz) in the duration task (t(8)=1.03, p= 0.33). 158 

Target durations were customised for each participant to perfectly match those previously 159 

produced in the number task: for each target number tested in the number matching task, we 160 

extracted the average response duration (across trials) and these eleven durations were re-161 

presented as duration targets (Table 1). Before the experiment, participants were familiarized 162 

with the task by performing one single block of trials with feedback (2 numbers, one 163 

displaying the target duration and the second displaying the reproduced duration, in seconds).  164 

In this phase 11 trials were presented, one for each tested duration (randomly selected trial by 165 

trial). No feedbacks were provided during the rest of the experiment. As for the number task, 166 

for each participant, each duration was presented from 25 to 30 times (for a total of 2455 167 

trials), in separate blocks.  168 

 169 

Table 1. Responses duration (in seconds) tested in in the control 

duration task for each one of the nine participants (S1-S9) 

S1 S2 S3 S4 S5 S6 S7 S8 S9 

3 4.1 7.3 3.5 2.2 5 2.4 2.6 2.3 

4 6.3 9.2 4.9 3.8 6.3 3.3 2.8 2.9 

4.4 7 10.5 5.4 4.2 6.5 3.5 3 3.2 

5.1 7.9 11.3 6.2 5 8.3 4.2 3.8 4 

5.7 9.3 12.5 7 5.4 8.6 4.3 4 4.4 

6.8 10 15.3 8.2 6 9.5 5.4 4.4 5 
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7.8 11.7 17 9.9 6.9 11.5 6.4 5.3 5.8 

8.8 13.7 17.4 10.6 7 13.2 7.4 5.7 6 

10.2 15.8 21 12.2 8.6 15.3 8.1 6 7.4 

12 17.8 23.3 13.3 9.2 17.7 9.6 7.2 8.8 

12.9 21.7 29.2 16 10.8 20.6 11.1 8.2 9.4 

 170 

 171 

Data analyses  172 

All the analyses were performed with Matlab software (ver. R2021a) with the exception of 173 

the repeated measures ANOVA comparing Weber fractions for the number and duration task 174 

and the t-test comparing frequency rates for the number and duration task (performed with 175 

JASP software, ver. 0.16.3). 176 

 177 

Data processing 178 

As a first step we detected and eliminated outlier responses. For each experimental condition, 179 

and separately for each participant and stimulus intensity, responses were converted into  180 

z−scores and eliminated from the analyses if falling above or below 3 STD. In the number 181 

matching task, this procedure resulted in the elimination of 0.5% of the trials in the fast-182 

tapping condition and 0.6% in the slow tapping condition. In the control duration task, the 183 

same procedure led to the elimination of 0.4% trials in the duration matching condition and 184 

0.6% in the number matching condition.  185 

As a second step we measured responses accuracy and precision, on non-standardized data. 186 

For each task, and separately for each participant and stimulus intensity (numbers or 187 

durations), accuracy was indexed as the mean reproduction value across trials and precision 188 

as Weber fraction, computed as responses standard deviation divided by the average 189 

reproduction.  190 

 191 

Correlation matrices and numerical distance 192 

As a third step we computed correlation matrices between (non-standardized) Weber 193 

fractions using Pearson correlation coefficients and analyses the correlation strength as a 194 

function of numerical distance. This last analysis (Figure 2, panels B&D) was performed on 195 
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binned data. Bins were created to have an approximately equal number of observations for 196 

each bin (13, 13, 14, 15). For each target, the numerical distance was calculated as the base 197 

ten logarithm ratio between itself and the remaining target numbers. The correlation 198 

coefficients between Weber fractions were then averaged within the following numerical 199 

distance bins (log10 ratios): <0.08; 0.08−0.14; 0.14−0.21; 0.21−0.29, 0.29−0.39, >0.39). 200 

As a sanity check, this analysis was also performed on randomized correlation matrices. For 201 

this analysis we applied a bootstrap approach. On each of 10000 iterations, separately for 202 

each subject, the Weber fractions were randomized between numerosities and a new 203 

correlation matrix computed. Then (as before) the correlation coefficients were averaged 204 

within the reported bins. The results of this analysis are reported in Figure 3 (panels B&D) as 205 

the “random” curve.  206 

 207 

Hierarchical clustering and Principal component analysis 208 

The hierarchical clustering was performed on normalised (z-scores) Weber fractions using 209 

the linkage method. The distances were calculated with the Euclidean metric and the “ward” 210 

algorithm was used to compute the distance between clusters. The number of clusters was 211 

determined by the inconsistency index (computed by the build in inconsistent function in 212 

Matlab 2021a) and results reported as a dendrogram. As for the PCA, to check the validity of 213 

this analysis, we tested it with randomized correlation matrices, with a bootstrap approach. 214 

On each of 10,000 iterations, separately for each participant, the Weber fractions were 215 

randomized between numerosities, and a new clustering was computed. Then at each 216 

iteration we looked at the structure of the clusters, counting the time on which the clusters 217 

(separately for the fast and slow tapping conditions) contained contiguous numbers (as in 218 

Figure 4 A&B).  219 

The principal component analysis was performed on normalised (z-scores) and centred 220 

Weber fractions and factors rotated with the non-orthogonal promax method (but orthogonal 221 

varimax provides similar results). The number of components was determined as those 222 

exceeding an eigenvalue of 1 and from visual inspection of the scree plots. 223 

 224 

Modelling 225 
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As a preliminary analysis, we modelled the behaviour of a system with 1, 2 or 4 channels, 226 

assuming that each channel would process stimuli with a gaussian tuning (like the illustration 227 

of Figure 1). The 1-channel model had infinitely broad tuning, and the tuning of the 2- and 4-228 

channel models was allowed to vary between 0.5 and 2 octaves. The peak of the tuning was 229 

equally spaced in log coordinates to be 8 and 32 for the 2-channel model and 8, 12.7, 20.1 230 

and 32 for the 4-channel model. The behaviour for numerosities handled by more than one 231 

channel was determined by a weighted average of the various channels. The average WF of 232 

the channels taken from the actual dataset (i.e. 0.176 for the slow and fast tapping) however 233 

the specific values for each observers could vary following a gaussian distribution whose 234 

standard deviation was varied to achieve best fit. We then calculated predicted correlations 235 

simulating 25 repetitions for each numerosity and observer. Without any noise correlations 236 

between the same channel would approximate 1. Hence to achieve reasonable levels of 237 

correlation we assumed that the actual measured WF was corrupted by some noise which we 238 

manipulated to mimic the average correlation between observed in the actual experiment. 239 

Correlation matrices were obtained by simulating 1000 experiments with cohorts of 29-30 240 

observers to yield the best fit (R2).  241 

 242 

Results 243 

Participants pressed a key a specific number of times (visually displayed as a digit) while 244 

repeatedly pronouncing the syllable 'ba' as fast as possible, to prevent counting. To gauge the 245 

generalizability across different motor actions, in separate sessions, participants were 246 

required to tap concurrently as fast as they could (fast tapping) or at a comfortable rate (slow 247 

tapping).  248 

As expected, the rate of tapping was higher in the fast tapping (average= 6.8 Hz, SD = 1) 249 

compared with the slow tapping condition (average = 3.3 Hz, SD = 1.6). In both conditions 250 

participants were able to correctly perform the numerical matching task, with average number 251 

of reproduced actions scaling linearly with visual targets (both r = 0.99, Figure 2A). Figure 2 252 

B shows precision (Weber fractions, Wfs) in matching target and reproduced numerosity as a 253 

function of target number. Average Wfs (across target number) in the fast and slow 254 

conditions were virtually identical (average= 0.17, SD= 0.01 and average= 0.17, SD= 0.007 255 

for fast and slow tapping respectively) and within each condition, Wfs were roughly constant 256 

across targets, following Weber’s Law.  257 
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 258 

 259 

Figure 2. Matched number (A) and Weber Fractions (B) as a function of target number, 260 
separated for the fast (circles) and slow (squares) tapping conditions. Lines through the data 261 
in panel A show best linear fits. Error bars are ±1 s.e.m., across participants.   262 
 263 

We then computed the correlations between Wfs between participants, for all targets values. 264 

Figures 3 A&C show correlation matrices across all participants (like the simulations of 265 

Figure 1), with each cell representing the Pearson correlation coefficient between the two 266 

target numbers. The correlations were all positive, ranging from 0.1 to 0.75 in the fast 267 

condition and 0.3 to 0.88 in the slow condition. Importantly, the correlations were clearly not 268 

randomly distributed, but most of the higher correlations (reddish) lie near the diagonal, 269 

indicating that the motor matching performance was more similar for neighbouring numbers, 270 

compared to higher numerical distance.  271 

Figure 3 B&D show average correlation coefficients between participants, averaged into six 272 

bins as a function of numerical distance. There is a systematic decreasing trend in both fast 273 

and slow tapping conditions (linear fit on unbinned data shown by dashed lines in Figure 3 274 

B&D: slopes= –0.58 ±0.11, –0.57 ±0.07 for fast and slow respectively, both  p<0.001), 275 

clearly different to that predicted by a random pattern of matching precision levels (curves 276 

with filled symbols in Figure 3 B&D, see methods). Overall, these analyses confirm that the 277 

degree of performance similarity was systematically modulated by the numerical difference 278 

between targets, in line with the existence of underlying tuning functions.  279 
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As a preliminary analysis we modelled the data with simulations like that of Figure 1, 280 

assuming one, two or four numerosity-selective channels. The average WFs for the 281 

participants was taken from the data, and channel width, variability, and measurement noise 282 

free parameters. The fits with a single channel were very poor, with R2 = 0.003 and 0.002 283 

(essentially no better than the mean) for the fast and slow tapping respectively. However, the 284 

two-channel model gave much better fits, with R2 = 0.54 and 0.29. The four-channel model 285 

had similarly good fits, with R2 = 0.52 and 0.28. The parameters to yield best fits seemed 286 

reasonable, with channel width of 1.2 and 1.8 octaves, and channel variability between 0.051 287 

and 0.106. 288 

 289 

Figure 3. Inter-participant correlations. A. Correlation matrices of Wfs for all pairs of target 290 
numbers for the slow-tapping condition. B. Correlation strength as a function of numerical 291 
ratio, for the slow-tapping condition. Small, filled symbols show bootstrapped average 292 
correlation strengths of randomized Wfs matrices. Dashed lines are the best linear fit on 293 
unbinned data and error bars are ±1s.e.m. C & D. Like A & B, for the fast-tapping condition.  294 
 295 
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We then investigated the structure underlying the number sensorimotor translation system 296 

with a hierarchical clustering analysis (see methods for details). Figure 4 (A&C) shows the 297 

resulting dendrograms. In both the fast and slow tapping conditions, the analyses returned a 298 

two-cluster solution with one cluster aggregating low numbers (N8-13 and N8-14 in the fast 299 

and slow conditions) and the other aggregating high numbers (N>13 and N>14 respectively). 300 

This analysis corroborates the results obtained from the correlation analysis and add on this 301 

suggests the existence (at least) of two channels dealing with relatively different numerical 302 

targets. A control analysis on randomised data (see methods) yielded clusters containing 303 

contiguous numbers only in 0.005% of cases (for both the fast and slow tapping conditions), 304 

suggesting that the results with the original dataset likely represent a structure genuinely 305 

organised as a function of the highest similarity between neighbouring numbers. 306 

To study the tuning of these two hypothetical channels, we then performed a factor analysis 307 

on Wfs. In both fast and slow tapping conditions, two factors emerged (see methods), 308 

explaining a total of 68% and 81% of the total variance (for the fast and slow tapping 309 

conditions respectively). Figure 4 shows the rotated component strength as a function of 310 

target number. The results revealed two bell-shaped tuning functions for both fast (panel B) 311 

and slow (panel D) tapping conditions, with factor strength distributions reasonably described 312 

by logGaussian functions (fast tapping: R2 = 0.6 and R2 = 0.65; slow tapping: R2 = 0.97, R2 = 313 

0.94 for 1st and 2nd components). In the fast-tapping condition, the first component peaked at 314 

lower target numbers (N 11) and the second component at higher numbers (N 29). In the slow 315 

motor condition, the first component packed at higher target numbers (N 26) and the second 316 

component at lower numbers (N 8). 317 
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 318 

Figure 4. Dendrograms from hierarchical clustering on Wfs in the fast (A) and slow (C) 319 
tapping conditions. Panels B and D show the strength of the first two principal components 320 
from a PCA on the Wfs measured in the fast (B) and slow (D) tapping conditions. The 321 
strength of these components is shown as a function of the different numerical target levels. 322 
The smooth curves are logGaussian fits to the component strengths.   323 
 324 

That fast and slow tapping conditions provided similar results despite the very different 325 

tapping rates suggests that temporal frequency of the tapping did not play a major role. 326 

However, as total response duration was positively correlated with target numbers (r = 0.95, 327 

r = 0.36, for fast and slow tapping, both p<0.001), participants might have used response 328 

duration instead of number of taps as a stop criterion. To test this possibility, a sub−sample of 329 

9 participants were given a control task to match the duration of a tone (see methods). If the 330 

number task was performed through duration, this latter must have an equal or lower 331 

precision level compared to that measured in the number task.  Figure 5 A&B shows that this 332 

was not the case with the precision level (Wfs) in the number task being clearly lower (higher 333 

precision) than the duration task, making the use of duration strategies during the number 334 

task unlikely (number: average=0.16, SD= 0.03; duration: average= 0.24, SD= 0.04). A RM 335 

ANOVA with task (duration, number) and stimuli intensity (11 levels) confirmed the 336 

difference (F(1, 80)= 19.97, p= 0.002). 337 
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 338 

Figure 5. A) Average (across participant) Weber fraction for the number (filled squares) and 339 
duration (empty squares) matching tasks, as a function of ranked target stimulus (visual digits 340 
for the number task, and the corresponding auditory tones durations for the duration task, see 341 
methods for details). B) Individual Weber fractions for the number task plotted against those 342 
for the duration task, averaged across stimulus intensity. The star symbol reports average 343 
across participants. Error bars are ±1 s.e.m.  344 
 345 

 346 

 347 

Discussion 348 

Using a motor reproduction task, we measured the precision with which number digits were 349 

translated into sequences of actions. Replicating previous evidence from both human and 350 

animal studies (Cordes et al., 2001; Kirschhock & Nieder, 2022; Whalen et al., 1999), 351 

precision followed Weber’s law, a well-established signature of the Approximate Number 352 

System (Anobile et al., 2014; Dehaene, 2011; Feigenson et al., 2004; Ross, 2003). More 353 

importantly, by looking at the covariance structure of the precision index (Weber fraction) 354 

between participants, we found evidence for sensorimotor channels tuned to number. 355 

Precision for reproducing numerically similar targets was positively correlated (r∼0.8) but for 356 

larger numerical distances, correlations decreased (r∼0.1), suggesting the action of sensori-357 

motor channels sharing the encoding of neighbouring numbers. In line with this, cluster 358 

analyses identified two main clusters, one aggregating low numbers (from 8 to ∼13) and the 359 

other higher numbers (from ∼13 to 32), pointing to (at least) two mechanisms encoding low 360 
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and higher numbers. Finally, Principal Component Analyses on Weber fractions confirmed 361 

this and went to describe two bell-shaped components, one peaking at relatively low numbers 362 

(∼10) and the second at higher numbers (∼27).  363 

The covariance technique used here has been widely employed to reveal visual channels in 364 

several basic perceptual dimensions such as colour, motion, contrast and spatial frequency 365 

(Morrone et al., 1999; Peterzell et al., 1995, 2000; Peterzell & Kennedy, 2016; Peterzell & 366 

Teller, 1996, 2000; Rammsayer & Troche, 2014). The technique is based on the idea that 367 

interindividual variability conveys information that can reveal common sensory processes 368 

(Peterzell & Kennedy, 2016), as illustrated in Figure 0. In practice, this approach requires 369 

multiple and densely sampled measurements of different stimuli intensity, in the same 370 

sample. Regions of high intercorrelation between neighbouring stimuli intensity can be 371 

interpreted to imply that sets of stimuli are processed by the same (shared) underlying 372 

channel. This channel, while responding relatively more to its preferred stimulus, will also be 373 

activated by neighbouring stimuli that although slightly different from the preferred intensity, 374 

are nevertheless included in the same response distribution. Following this rationale, 375 

relatively lower correlations among more distant stimuli would indicate that these are 376 

processed by different, or at least partially independent, channels (Peterzell & Teller, 1996). 377 

The results obtained in this study are in line with those predicted by this technique, implying 378 

the existence of sensorimotor channels tuned to different numerical targets, with a rather 379 

wide response distribution. 380 

The results reinforce adaptation studies showing number-selective adaptation between actions 381 

and perceived numerosity (Anobile et al., 2016; Maldonado Moscoso et al., 2020). Those 382 

studies provided strong evidence for the existence of at least two (but possibly more) 383 

sensorimotor mechanisms, tuned to high and low numbers. The results are also broadly in 384 

line with recent evidence from animal physiology showing number selective sensorimotor 385 

neurons in the crow brain, translating visual inputs (digits and dot arrays) into number of 386 

pecks (Kirschhock & Nieder, 2022). While the crow study found as many channels as the 387 

number tested (N1–5), we found evidence for only two channels (clusters and factors) over 388 

the range of 8–32. However, it is important to note that PCA aims to summarize the dataset 389 

with the minimal number of components (channels). We can therefore not exclude the 390 

possible existence of more than two (perhaps not fully independent) channels. The results 391 

should be not interpreted as evidence for only two sensorimotor channels, but rather as 392 

evidence that tuned mechanisms exist in the human brain, with at least two different tunings. 393 
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This is also apparent from the simulations of Figure 1, showing that the predictions of two or 394 

multiple channels are very similar, difficult to distinguish with the current technique. Indeed, 395 

the fits to the data using two or four channels were very similar, but both almost infinitely 396 

better than the one-channel fit.  397 

The results reported here are unlikely to be contaminated by strategies capitalizing on 398 

duration of motor responses and/or temporal frequency. Despite the very different tapping 399 

rates in the slow (∼3 Hz) and fast motor conditions (∼7 Hz), the overall pattern of results 400 

remained almost unchanged. The only difference was an inversion of the order of the 401 

principal components and factors, with the first component peaking at lower numbers for the 402 

fast-tapping condition and higher numbers for the slow tapping condition (and vice versa for 403 

the second component). This result suggests that for fast actions lower number targets show 404 

more variance than higher numbers, and vice versa for slower actions. Although we have no 405 

definitive explanation for this pattern of results, it could arise from different effects of the 406 

matching motor noise associated with different tapping rates across the number ranges. In 407 

any event, the results showed two covariance channels for both conditions, similarly 408 

distributed along the numerical targets, supporting the existence of at least two mechanisms, 409 

one tuned to the lower numbers and one to the higher (at least within this numerical range). 410 

Even if total duration of responses were positively correlated with target number, and 411 

although participants were free to use duration as a viable stopping criterion, the exploitation 412 

of this non-numerical strategy seems unlikely. In the control task, where participants 413 

reproduced duration rather than number, clearly showed lower precision levels, making it 414 

unlikely to account for the precision measured on motor numerosity reproduction. Once 415 

again, these results are in line with previous studies showing lower sensitivities for motor 416 

matching duration tasks compared with motor number matching tasks. The 417 

electrophysiological study on crows also found similar neural response curves across very 418 

different motor response timing conditions (Kirschhock & Nieder, 2022). In summary, the 419 

results seem to suggest that the channels found here, like those in crows, reflect a genuine 420 

number selective sensorimotor transformation processes. 421 

What may be the adaptive value of this mechanism? The spontaneous use of the number of 422 

actions in the animal kingdom is now well-established. For example, desert ants rely on the 423 

number of steps to return to the nest (Wittlinger et al., 2006), some species of male frogs 424 

match or exceed the chucks of competitors to attract female partner (Rose, 2017), and some 425 

songbirds modulate the numbers of syllables in their calls to signal dangerousness of 426 
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predators (Suzuki, 2016; Templeton et al., 2005). In all cases, the use of number-related 427 

motor strategies by animals has a clear ecological value for survival and species preservation.  428 

This system may have been preserved in humans and repurposed for our species-specific 429 

needs. Some hints come from the literature on the role of visual numerosity perception (dot 430 

arrays). Although most animal species are capable of some form of numerosity estimation 431 

(Butterworth, 2022), it appears that in humans numerosity estimation may act as a non-432 

symbolic precursor for the development of symbolic mathematical skills (Chen & Li, 2014; 433 

Decarli et al., 2023; Halberda et al., 2008; Mazzocco et al., 2011; Piazza, 2010; Piazza et al., 434 

2010; Schneider et al., 2017). The sensorimotor system could act as an early tool to 435 

constantly update and calibrate motor and sensory systems for the encoding and active 436 

manipulation of quantities and objects, with a potential impact on the quality of formal 437 

mathematical skills in later development. In line with this idea, there are reports of a possible 438 

co-occurrence of motor impairments in children with mathematical learning disorders such as 439 

dyscalculia (Westendorp et al., 2011), and children with developmental coordination 440 

disorders (which impair gross and fine motor function) perform poorly on math and 441 

numerosity tasks (Gomez et al., 2015, 2017). This is in line with the suggestive idea proposed 442 

by Walsh (2003) of a sensory magnitude system, encoding abstract quantities such as space, 443 

time and number, to guide planning and execution of actions. It is also in line with more 444 

recent proposal suggesting that the acquisition of number meaning is deeply grounded in 445 

sensorimotor experiences (Ranzini et al., 2022; Sixtus et al., 2023).  446 

 447 
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