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 2 

Abstract  15 

Perception depends not only on current sensory input but is also heavily influenced by the 16 

immediate past perceptual experience, a phenomenon known as “serial dependence”. It is 17 

particularly robust in face perception. We measured face-gender classification for a sequence 18 

of intermingled male, female and androgynous images. The classification showed strong serial 19 

dependence (androgynous images biased male when preceded by male and female when 20 

preceded by female). The strength of the bias oscillated over time in the beta range, at 14 Hz 21 

for female prior stimuli, 17 Hz for male. Using classification techniques, we were able to 22 

successfully classify the previous stimulus from current EEG activity. Classification accuracy 23 

correlated well with the strength of serial dependence in individual participants, confirming 24 

that the neural signal from the past trial biased face perception. Bandpass filtering of the 25 

signal within the beta range showed that the best information to classify gender was around 26 

14 Hz when the previous response was “female”, and around 17 Hz when it was “male”, 27 

reinforcing the psychophysical results showing serial dependence to be carried at those 28 

frequencies. Overall, the results suggest that recent experience of face-gender is selectively 29 

represented in beta-frequency (14–20 Hz) spectral components of intrinsic neural oscillations.  30 

 31 

Significance Statement  32 

The neurophysiological mechanisms of how past perceptual experience affects current 33 

perception are poorly understood. Using classification techniques, we demonstrate that the 34 

gender of face images can be decoded from the neural activity of the EEG response to the 35 

successive face stimulus, showing that relevant neural signals are maintained over trials. 36 

Classification accuracy was higher for participants with strong serial dependence, strongly 37 

implicating these signals as the neural substrate for serial dependence. The best information 38 

to classify gender was around 14 Hz for “female” faces, and around 17 Hz for “male”, 39 

reinforcing the psychophysical results showing serial dependence to be carried at those beta-40 

frequencies.  41 

  42 
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Introduction  43 

Much evidence has accumulated to suggest that the brain is a prediction machine, which 44 

generates our perceptive experience from internal models based (at least in part) on previous 45 

perceptual experience [1–4]. On this view, the brain must update predictions to minimize the 46 

discrepancy between internal models and external stimuli, in a constantly changing 47 

environment. Recent research suggest that low-frequency neural oscillations are a candidate 48 

for the role of messengers of top-down predictions [5–7].  49 

Beta oscillations (13-30 Hz) have been linked to several perceptual, motor and cognitive 50 

processes [8–12]. Especially the lower range (up to ~18 Hz) of beta oscillations may play a 51 

fundamental role in maintenance of working memory [13–15]. Also, they have been 52 

implicated in mechanisms of long-range communication and preservation of current brain 53 

state [16,17]. Top-down beta oscillations to macaque V1 enhance visually driven gamma 54 

oscillations [18]. Betti et al. [19] have proposed that beta oscillations may represent long-55 

term perceptual priors. A recent study [20] reports that representations held in working 56 

memory are activated at different phases of a beta (~25 Hz) cycle. In sum, these findings 57 

suggest that beta oscillations may be actively involved in updating priors. 58 

Studies suggest that neural representations of recent stimuli linger in visual cortex and are 59 

boosted on the appearance of a coherent stimulus [21–24]. This signal is referred to as an 60 

activity-silent trace, as it seems not to appear in electrophysiological recordings before new 61 

stimulation. It was proposed that the underlying mechanism is a change in synaptic weights 62 

[22,24–27]. Taken together, these findings illustrate a plausible mechanistic model of prior 63 

integration, but the origins, features and dynamics of this perceptual memory trace remain 64 

unclear. 65 

To investigate perceptual memory traces and their interaction with neural oscillations, we 66 

applied classification techniques to EEG recordings within a serial dependence paradigm. 67 

Serial dependence is a perceptual phenomenon that reveals the effects of immediate past 68 

experience on the perception of a new stimulus, integrating successive inputs on a perceptual 69 

continuum [28–31]. Liberman et al. [32] showed that face identities are subjected to serial 70 

dependence, whereby current perception of a face is systematically pulled towards recently 71 
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seen faces [33]. Bell et al. [34] showed that oscillatory activity in the beta range plays an 72 

important role in discrimination of gender, and that the oscillation frequency differs between 73 

male and female images: faster for male biases (17 Hz) and slower for female biases (~13 Hz). 74 

Based on these findings, we used a face-gender discrimination paradigm to study the 75 

neurophysiological characteristics of information of perceptual history embedded in neural 76 

oscillations. We classified previous responses across narrow-band frequency ranges, showing 77 

that the correlation of EEG signal and serial dependence peaks at separate frequencies for 78 

trials with high male and high female bias. Peak frequencies of the correlation were higher 79 

for male and lower for female images, consistent with frequencies identified in behavioral 80 

analysis. 81 

 82 

Results 83 

Behavioral results (serial dependence and oscillations in bias) 84 

Twelve participants (5 female) were asked to classify a sequence of face images as Male or 85 

Female (Fig. 1A and methods). The images were of three types, male, female and 86 

androgynous, constructed from morphed face space. Despite calibration, aiming at 25, 50 and 87 

75% response for female, male and androgenous stimuli, there remained a tendency to 88 

respond male rather than female to androgynous faces (average proportion male response = 89 

0.62 ± 0.14 STD). Considering only androgynous trials, participants responded Male more 90 

often when the previous response was Male rather than Female, consistent with a significant 91 

serial dependence effect (Fig. 1b: average difference = 0.082 ± 0.13 STD, paired-ttest 92 

p = 0.044). The effect varied considerably across subjects, suggesting genuine individual 93 

differences, consistent with previous studies [35,36]. Separating participants based on their 94 

gender did not reveal any meaningful difference in overall bias (average proportion male 95 

response for female participants = 0.68 ± 0.21 STD, average proportion male response for 96 

male participants = 0.58 ± 0.11 STD). 97 
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 98 

Figure 1 99 

Experimental paradigm and behavioural results. A. Schematics of the experimental paradigm. Each trial started 100 
with an audio cue followed after a random interval (between 100 -1000 ms) by a face image for 2 screen frames 101 
(16.6 ms). There were 15 different face identities, each morphed into 3 genders (androgynous, female and male), 102 
making 45 faces in total. Participants waited at least 1 s before responding by key-press, indicating whether the 103 
face appeared more female or male. A new trial started after an inter-trial interval between 800 and 1100 ms. 104 
B. Proportion male responses to androgynous stimuli, depending on the response to the previous stimulus 105 
(response “female” plotted on abscissa, “male” on ordinate). Yellow circles represent individual participants, with 106 
the dark yellow diamond showing the average participant. Participants above and to the left of the equality line 107 
tend to respond more male if the previous was male, and vice versa (positive serial dependence). The average 108 
participant showed serial dependence (average difference in proportion male response = 0.08 ± 0.13, p = 0.04). 109 

As shown in Figure 1A, each trial was initiated with an auditory tone, followed by the face 110 

stimulus after an interval ranging from 100 to 1000 ms. This procedure aimed to reveal 111 

oscillations in the response, as salient auditory stimuli can reset the phase of endogenous 112 

oscillations [37]. Figures 2A & C show the oscillatory biases in responses, plotted as a function 113 

of time after the synchronizing auditory tone, separately for when the previous response was 114 

Male and Female. In both cases the responses were not constant, but oscillated over time, 115 

faster for preceding Male than Female stimuli. The red curves of Figures 2A&C show the best-116 

fitting sinusoids, and Figures 2B&D show the associated Fourier transforms. Following a male 117 

response, bias oscillated at 18.2 Hz (p < 0.005, corrected for all frequencies in the range 10-118 

20 Hz of the surrogate data: see Methods), and also, but less significantly at 13 Hz (p < 0.05). 119 

Following a female response, bias oscillated most strongly at 14 Hz (significance p < 0.05). 120 

These results replicate the findings of Bell et al. (2020), where bias synchronized to voluntary 121 

button press (possibly a stronger endogenous reset) oscillated at 17 Hz after for previous male 122 

faces, and 13.5 Hz for female faces. 123 
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 124 

 125 

Figure 2 126 

Timecourse and Fourier transforms of response bias. A. Proportion of “Male” responses to androgynous stimuli 127 
preceded by response Male, as a function of time after the auditory tone (blue symbols). The red curve shows the 128 
best fitting sinusoid, at 18.2 Hz. B. Fourier transform of the data of Fig. A, showing the strongest peak at 18.2 Hz. 129 
There is a secondary, weaker peak at 13 Hz. The dashed black lines show probability of significance, corrected 130 
for all frequencies in the range 10-20 Hz of the surrogate data C. Same as A, but for stimuli preceded by response 131 
Female. Best fitting sinusoid at 14 Hz. D. Same as B, for stimuli preceded by response Female.  132 

 133 

EEG results (ERP and power analysis) 134 

The main purpose of this study was to study the neural mechanisms behind serial 135 

dependence, recording EEG from participants while they made sequential psychophysical 136 

judgements. We first analyzed the ERPs for the two conditions “previous response male” and 137 

“previous response female” (average result in Fig. 3 a-c for electrodes Fz, CP5 and Oz). There 138 

were no clear or significant differences between the two conditions. We also analyzed the 139 

responses aligning them to the phase-resetting auditory tone (Fig. 2 d-f), but again, there 140 

were no significant differences in the responses.  141 
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 142 

Figure 3 143 
Event-related potentials (ERPs) separated according to previous response. A-C. ERP synchronized to face 144 
stimulus presentation of example Fz, CP5 and Oz electrodes. In blue ERP of trials where participants responded 145 
male to the previous trial, in red where they responded female. Color shading represents ±Standard Error of the 146 
Mean (SEM). D-F. ERP synchronized to audio cue presentation of Fz, CP5 and Oz electrodes. 147 
 148 

Decoding results 149 

We next used classification techniques to test whether decoding EEG signals to the current 150 

trial could classify the responses to the previous face stimuli. This technique is based on small 151 

differences in signal distribution across electrode position. It relies on few assumptions, as all 152 

brain activity is used, without selecting electrodes or ROIs.  153 

Figure 4a shows the main result. It shows accuracy of decoding the previous psychophysical 154 

response from the EEG response to the current stimulus, as a function of time after (current) 155 

stimulus onset. The curve is consistently above chance (0.5, for the two possible responses), 156 

and reaches the stringent significance level between 340 and 560 ms after stimulus onset, 157 

and also between 1080 and 1200 ms. This shows that there is information about the previous 158 

trial in the neural response to the current trial. Figure 4b is the temporal generalization matrix 159 
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showing classification accuracy across all training and testing times. The decoding 160 

performance of the trained models for the specific time interval is plotted as a heat map. 161 

There are three regions where decoding was significantly above chance (within the white 162 

regions of Fig. 3b), two corresponding to those illustrated in Figure 4a (which is the diagonal 163 

of the matrix), and an extra one at 0 training and about 120 ms testing. The regions of high 164 

accuracy are distributed mainly across the diagonal, but the additional significant region away 165 

from the diagonal is evidence for some generalization for different training and testing times. 166 

 167 

Figure 4 168 
Decoding of previous responses from current-trial EEG activity. In all decoding procedures, classifiers were 169 
trained to distinguish between previous response male and previous response female, on all trials. A. Classifier 170 
accuracy as a function of duration after trial onset for all trials of the previous stimuli. B. Generalization matrix 171 
for the same stimuli, decoding all possible combinations of training and testing times. White contours indicate 172 
regions of significant accuracy after cluster correction. Decoding was strongest along the diagonal (which 173 
corresponds to figure A), but there were also significant regions of decoding away from the diagonal, suggesting 174 
generalization of decoding. C,D Same as A & B, but only when the current response was male and the previous 175 
stimulus androgenous. E,F Same as A & B, but only when the current response was female and the previous 176 
stimulus androgenous. 177 
 178 

To investigate further the relevance of this trace on participant responses, we considered only 179 

trials where the current stimulus was androgynous, and further separated them on the basis 180 

of participant response to it (male or female: Fig. 4c–f). We took classifiers trained on all 181 
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 9 

previous trials (as for Fig. 4a&b), but tested them on these two subsets of data: current 182 

androgenous stimuli with response Male and with response Female, to examine separately 183 

decoded signal in trials where participants had higher likelihood of being biased towards one 184 

of the two responses based on the presence of the memory trace.  185 

The results show that previous response traces are much more readable in androgynous trials 186 

where participants responded Female (difference in peak accuracy = 0.12 ± 0.03 SEM, 187 

p = 0.003, Log(BF10) = 1.16). This is possibly due to the overall tendency of participants to 188 

respond male, so there is more information in a response Female. Again the highest accuracy 189 

tends to be on the diagonals, but some regions off-diagonal are significant, pointing to limited 190 

generalization of coding and decoding.  191 

Activation maps (Fig. 5a) show the time-course of which electrodes were most informative 192 

for classification. Before stimulus presentation decoding relied on a stable right-occipital 193 

dipole and on distributed frontocentral locations. In early perceptual processing (up to 194 

~60 ms) the memory signal was classified by activity of occipital electrodes. The signal shifted 195 

progressively to frontal locations up to 140 ms, when just frontal electrodes contributed to 196 

classification. At 300 ms, occipital electrodes started to contribute again to the signal. At 197 

around 700 ms parietal and frontocentral locations became relevant, remaining relatively 198 

stable up to about 1600 ms. Activation maps before stimulus presentation and well after 199 

stimulus presentation were quite different, consistent with the lack of generalization for 200 

those intervals across training and testing time (Fig. 4 b,d,f top-left and bottom-right corner). 201 

 202 

Figure 5 203 
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 10 

Activation patterns and correlation with behavior. A. Activation patterns of classification showing the relative 204 
weights assigned to electrodes for decoding for example time points. Positive weights (red) indicate that higher 205 
power at the location sways classifiers to identify the signal as belonging to the “previous female” class, while 206 
negative weights (blue) indicate that higher power sways classification towards “previous male”. Weights are 207 
normalized on maximum activation across electrodes and time. B. Correlation between serial dependence strength 208 
and classification accuracy across participants, for the 3 decoding conditions in Fig. 3. Serial dependence strength 209 
(abscissa, constant across all 3 conditions) was calculated as the difference between proportion male response 210 
with previous male response and proportion male response with previous female response. Classification accuracy 211 
was calculated by averaging individual participant accuracy across the diagonal ± 2 points (final precision ±60 212 
ms) in the window 0–1 s. Decoding tested on all trials in black, on androgynous trials with female response in red, 213 
on androgynous trials with male response in blue. The strength of the correlation is given by Log10 Bayes Factor, 214 
shown near each fit. 215 
 216 

We tested the correlation between classification accuracy and serial dependence across 217 

participants (Fig. 5b). Classification accuracy was averaged over the entire post-stimulus time 218 

window of the temporal generalization matrix, and serial dependence calculated as the 219 

difference of proportion male responses on androgynous trials when the previous response 220 

was male compared with when it was female. We found a significant positive correlation of 221 

serial dependence with average decoding of all trials (black dots, r = 0.89, p < 0.001, 222 

Log10BF = 2.5). The correlation of memory trace and serial dependence was stronger for 223 

classification accuracy of female-biased trials (red dots, r = 0.93, p < 0.0001, Log10BF = 3.4) 224 

compared with male-biased trials (blue dots, r = 0.80, p = 0.002, Log10BF = 1.4, but the 225 

difference was not statistically different (rdifference = 0.13, p = 0.23). 226 

To relate the EEG results to the psychophysics, which showed clear beta-frequency 227 

oscillations, we repeated the decoding analysis after filtering the EEG into narrow-band 228 

windows, from 4 to 20 Hz. Figure 6A shows how decoding accuracy varied with filter 229 

frequency. Considering all androgenous stimuli, average classification was relatively flat 230 

across frequency (black dashed line, Fig. 6a). However, confining the analysis to androgynous 231 

stimuli with female response shows slightly decoding around low-beta, 12-17 Hz (red line, 232 

Fig. 6). The trend with androgynous stimuli with male response was less clear, but tended to 233 

increase over the beta range, peaking at the maximum analyzed, around 20 Hz. This is 234 

consistent with the psychophysical results, but not strong support.  235 
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Figure 6 237 
Decoding across narrow frequency ranges. A. Classification accuracy across frequency calculated as average 238 
across the diagonal ± 2 points (precision ±60 ms) in the window 0–1 s. Classification accuracy tested on all trials 239 
(black), on androgynous trials with female response (red) and on androgynous trials with male response (blue). 240 
B. Squared correlation coefficients (variance explained) between classification accuracy and serial dependence 241 
strength across participants. Classification accuracy calculated as in A. Serial dependence effect (constant across 242 
all 3 conditions) was calculated as the difference between proportion male response with previous male response 243 
and proportion male response with previous female response. C. Log10 of bayes factor of the correlations of 244 
Fig. B.  245 
 246 

As decoding accuracy covaried with the magnitude of serial dependence, showing a strong 247 

link between the psychophysics and EEG, we next tested whether the strength of the 248 

correlation my vary with frequency range. Figure 6b shows how the square of the correlation 249 

coefficient (R2, the variance explained by the correlation) varies with filter frequency. The 250 

correlation considering all androgenous trials are again relatively flat, but  the correlation for 251 

the androgenous stimuli with Female response shows peaks at around 14-15 Hz, while that 252 

for androgenous stimuli with male response peaks at 17 Hz. Again this is very similar to the 253 

psychophysical results showing peaks at 14 and 18 Hz for previous Female and Male 254 

responses. Figure 6C shows the log Bayes Factor associated with the correlations, showing 255 

even clearer peaks at 14 Hz for Female and 18 Hz for Male.   256 

 257 

Discussion  258 

This study investigated whether neural endogenous oscillations may be instrumental in 259 

transmitting predictive information about face-gender. The results show that previous 260 

responses leave a lingering EEG trace that can be decoded during the processing of a new 261 

stimulus. We report strong correlations between the strength of behavioral serial 262 

dependence effects and the strength of neural classification of previous responses. 263 

Importantly, the correlations peak at similar frequencies to those identified in behavioral 264 

analysis, both in previous research [34] and here, suggesting that perceptual representations 265 

of recent experience may be encoded within the spectral structure of neural oscillations. 266 

Since classifiers are trained on averages of single-trial EEG amplitude envelopes, decoding 267 

could rely on both phase-locked and non-phase-locked information. Temporal generalization 268 
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maps reveal sparse regions of significant decoding of the previous response, but exploring the 269 

distributions of accuracy, especially for androgynous trials with female response, suggests 270 

that regions of high accuracy may be distributed over the entire temporal matrix, rather than 271 

being confined to the diagonals where training and testing time coincide. This qualitative 272 

interpretation would be consistent with a memory signal that is relatively stable in time, with 273 

discrete evolution at specific time points [38]. Decoding accuracy was strongest for 274 

androgynous trials with female response, and weakest for androgynous trials with male 275 

response. This may be explained by the overall male bias of participants, so the female 276 

response was more informative. 277 

To demonstrate decoding of previous trials, we chose to use responses rather than stimuli as 278 

class labels, for several reasons. Firstly, on half the trials the stimuli were androgynous, 279 

neither male nor female, and therefore uninformative: yet the response to those stimuli is 280 

very informative, reflecting an internal state rather than the stimulus. Secondly, as responses 281 

to male and female stimuli were about 75% correct, stimuli and responses are highly 282 

correlated, hard to disentangle. We are aware of the ongoing debate on whether serial 283 

dependence acts on early perception or on later decision-making processes [39–43]. 284 

However, responses do not represent only late decision stages, but the internal neural state 285 

of the participant, so the choice of using responses does not speak to this issue. Inspection of 286 

the activation patterns of decoders shows that classification relies mainly on occipital 287 

electrodes during early stages of visual processing. This is consistent with quick activation of 288 

early visual cortices reported in previous studies on serial dependence [41,44–46]. The 289 

immediate activation of visual areas, as early as 50 ms after face presentation (earlier than 290 

we would expect for bottom-up visual processing) suggests that the representation of the 291 

prior may be already embedded in visual cortices, possibly in the form of synaptic gain 292 

changes [22,23,47]. Lastly, the correlation between neural signal and behavior and the 293 

coherence in frequency found in the GLM analysis points to beta oscillations as the generator 294 

of the behavioral bias. 295 

Recent studies have employed classification techniques to reveal traces of previous trials, 296 

suggesting that perceptual experience lingers as an activity-silent trace, which is then 297 

reactivated with new stimulation [21–24]. In these paradigms, classification accuracy is at 298 

chance level before the presentation of a new stimulus, and significant decoding is reported 299 
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only after. However, researchers have also questioned the activity-silent trace hypothesis. 300 

Runyan et al. [48] identified replay of neural activity during rest, which may be related to 301 

ongoing consolidation processes that help to strengthen memories over time. Stokes et al. 302 

[49] also challenge the idea, suggesting that perceptual learning is instead supported by 303 

changes in neural connectivity and plasticity. We have previously supported the activity-silent 304 

trace hypothesis [24], finding that classification accuracy (for spatial frequency 305 

discrimination) was not significant before new stimuli were presented. However, the 306 

temporal generalization matrices (Fig. 3) for the female bias condition show that the trace is 307 

sometimes present before the presentation of a new stimulus However, in interpreting these 308 

results, we also have to consider that the generalization matrices for female bias is noisier, 309 

given the lower number of trials available. Furthermore, classifiers trained before time 0 do 310 

not accurately classify previous traces after time 0, and vice versa. This suggests that there is 311 

a distinct change in the signal when a new stimulus is presented, supporting the action of a 312 

silent memory signal. 313 

It is widely acknowledged that observers enhance efficiency by using past information to 314 

anticipate future sensory input. The connection between behavior and decoding of previous 315 

responses was notably pronounced when limiting the neurophysiological signal to low-beta 316 

frequencies, where the behavioral bias oscillated according to the previously perceived 317 

gender. It has been established that low-frequency oscillations contribute to the transmission 318 

of predictive information, akin to the concept of perceptual echoes put forth by VanRullen & 319 

Macdonald [50]. Ho et al. [51] showed that auditory stimuli oscillated within the alpha range 320 

(~9 Hz) at distinct phases when presented to either the left or the right ear. Using a similar 321 

paradigm to the present study, Bell et al. [34] demonstrated that following the observation 322 

of a specific stimulus, whether male or female, the inclination to perceive an androgynous 323 

face as female or male oscillated respectively at 13.5 or 17 Hz. Considerable evidence exists 324 

detailing how bias exhibits oscillatory behavior at specific frequencies, as observed in visual 325 

orientation discrimination [36], trans-saccadic location discrimination [52], audiovisual 326 

temporal judgement [53]. For more intricate perceptual functions, like face gender 327 

discrimination, it is possible that prior expectations require a coding mechanism involving 328 

multiple frequency channels. The literature suggests that beta oscillations may play a role in 329 

processing local features [54,55]. It is conceivable that various frequencies of beta oscillations 330 
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might explain the response patterns elicited by female or male stimuli, as well as more 331 

complex stimuli in general. The arrangement of local facial features could potentially clue the 332 

interpretation of faces as masculine or feminine. 333 

Overall, our results suggest that recent experience of face-gender is represented in low-334 

frequency spectral components of intrinsic neural oscillations (low-beta 14–20 Hz). The 335 

strength of the active trace correlates with the strength of serial effects in behavior, especially 336 

in the low-beta range, suggesting that our signal may be the underlying neural substrate of 337 

the attractive effect. These results suggest that recent experience lingers in perceptual 338 

cortices and changes with new stimulation, possibly becoming strengthened. The strong 339 

correlation between decoding accuracy and the strength of serial dependence further 340 

suggests that these oscillatory signals are highly instrumental in the transmission of internal 341 

models, within the predictive coding framework [5,56]. Overall, our results corroborate the 342 

intuition of Bastos et al. [57] that in a hierarchical predictive coding framework, low-343 

frequency neural oscillations in encephalography (4–22 Hz range) are a good candidate for 344 

top-down internal models. 345 

 346 

Materials and Methods 347 

Participants 348 

Twelve healthy adults (7 females, age range 20 – 29 years, mean = 24.8 years, SD = 2.7 years) 349 

participated in the experiment with monetary compensation (10 €/h). All participants had 350 

normal or corrected-to-normal vision and gave written informed consent. The experimental 351 

design was approved by the local regional ethics committee (Comitato Etico Pediatrico 352 

Regionale — Azienda Ospedaliero-Universitaria Meyer — Firenze), and is in line with the 353 

declaration of Helsinki for ethical principles for medical research involving human subjects 354 

(DoH-Oct2008). We did not perform a formal power analysis to determine participant number 355 

but, based on our previous experience with decoding EEG [24] and also psychophysically 356 

measured oscillations of face gender [34], we reasoned that 12 should be sufficient.  357 

Stimuli and apparatus 358 
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The experiment was recorded in a quiet dark room, where participants sat in a comfortable 359 

chair with head rested on a chin rest. The stimuli were presented on a Display++ LCD Monitor 360 

(Cambridge Research Systems, 120 Hz, 1920 x 1080 resolution), gamma corrected, 70 cm from 361 

the eyes, mean grey screen luminance equal to 50 cd/m2. Face stimuli were a subset of images 362 

taken from Bell et al. (2020). They were originally generated in FaceGen Modeller 3.5.3 and 363 

saved as high resolution 2D grey scale image (6.6° x 6.6°). The faces were white, mid 20s, with 364 

gender neutral coloring, shape, and typical asymmetry. We performed a preliminary 365 

response-balancing procedure on 4 naïve observers who did not participate in the experiment 366 

(600 trials each, 25 face identities). We selected 15 face identities based on mean response 367 

deviating no more than ±10% from target accuracies (75% male response for male faces, 50% 368 

male response for androgynous, 25% male response for female). The phase-resetting auditory 369 

stimulus was a 16 ms, 900 Hz pure tone (80 dB sound pressure level at the ear, 44100 kHz 370 

sampling frequency) projected through 2 loudspeakers besides the monitor (following Romei 371 

et al. [37]). 372 

Procedure 373 

Participants fixated a white fixation dot at the center of the screen, which was present for the 374 

whole duration of the experiment except during face stimulus presentation. Each trial began 375 

with the presentation of the auditory stimulus. After an interval ranging uniformly from 100 376 

to 1000 ms (at 120 Hz sampling frequency, the monitor refresh rate) one of the 45 faces was 377 

presented for 17 ms (two frames). Participants were instructed to wait at least 1 second 378 

before responding, indicating whether the presented face seemed male or female (by 379 

pressing the left or right arrow keyboard keys). Trials where participants responded earlier 380 

than 1 second were eliminated from the analysis. Response configuration (association of 381 

arrows with gender) was randomized between participants, and switched halfway through 382 

the experiment. After button press, a new trial started after an interval ranging uniformly 383 

from 800 to 1100 ms, so that the auditory stimulus presentation was not easily predictable. 384 

Each participant completed 1215 trials. 385 

EEG Acquisition and Preprocessing 386 
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EEG data were collected with a Nautilus Research headset (g.tec) at a sample rate of 250 Hz 387 

with no online filtering. The data were referenced online to a unilateral electrode placed 388 

behind the left ear. Activity was measured from 32 gel-based active electrodes (g.LADYbird 389 

technology) arranged according to the 10/20 system. Impedance was kept below 50 kΩ. 390 

Offline EEG preprocessing was performed in MATLAB (MathWorks®) with custom code. EEG 391 

data were referenced to the common average reference and filtered with a FIR bandpass filter 392 

(Chebyshev window, 128th order, stopbands 1 Hz and 35 Hz, sidelobe magnitude factor 50 393 

dB). For the main data analysis, epochs were extracted aligned to stimulus presentation, 394 

comprising a segment of data from −500 ms to 1800 ms after the stimulus. Epochs were 395 

visually inspected for motor artifacts and wireless failure of signal transmission (manual 396 

rejection of 0.8% ± 0.6% STD of data across subjects). Ocular artifacts were removed through 397 

blind source separation with ICA decomposition [58]. 398 

Data analysis – psychophysics 399 

We analyzed individual responses to androgynous face identities, calculating the proportion 400 

of “male” responses, depending on the response to the previous trial. We removed from all 401 

analyses trials where response latencies were lower than 1 second or higher than 3 seconds 402 

(average response latency 2.2 s; CI95 = 1.6–2.7 s). After artifact removal we obtained 1249 ± 9 403 

trials per subject. To assess whether previous responses changed gender discrimination bias, 404 

we compared by t-test proportion “male” responses when previous response was male to 405 

when previous response was female (only on androgynous trials). The same analysis was 406 

repeated based on face identity of the previous trial (stimulus-based analysis). 407 

To measure oscillations in face-gender behavioral bias, we applied single-trial analysis to 408 

aggregate data from all participants, including all the trials that survived the EEG artefact 409 

rejection procedure. The general linear model (GLM) analysis weighted each single trial with 410 

the following model: 411 

𝑦 = 𝛽! + 𝛽" sin(2𝜋𝑓𝑡) + 𝛽#cos	(2𝜋𝑓𝑡)   eq. 1 412 

where y is participant response (1 for male, 0 for female), t is SOA (audio to face) in seconds, 413 

f is a fixed frequency ranging from 4 to 20 Hz at 0.5 Hz intervals, b0, b1 and b2 are free 414 
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parameters. We separated responses to all stimuli based on previous response (male or 415 

female), and fit the above GLM, calculating the amplitude of the sinusoidal fit to each 416 

frequency in the range 10-20 Hz. To assess statistical significance, the surrogate data 417 

generated by shuffling the responses (2000 permutations) were analyzed with the same GLM 418 

obtaining a distribution of amplitudes across frequencies under the null hypothesis. 419 

Frequencies with amplitudes over the 95th percentile of this distribution were candidates for 420 

statistical significance. Candidate frequencies were deemed statistically significant only if they 421 

were included in a cluster larger than the 95th percentile of the distribution of cluster sizes. 422 

For each cluster in both previous male and previous female conditions, we noted the local 423 

maxima of amplitudes and their corresponding frequencies. For illustration purpose only 424 

(Fig. 6) we show the responses binned on stimulus onset asynchrony (SOA) at 8.3 ms intervals 425 

with a running average of 3 consecutive bins (weights: 0.305, 0.39, 0.305).  426 

Data analysis – EEG time-domain and power analysis 427 

We calculated event-related potentials (ERPs) synchronized to face stimulus presentation, 428 

separately for the two conditions “previous male” and “previous female”. Grand-average 429 

ERPs were calculated by averaging single-participant ERPs normalized (z-scores) to a baseline 430 

window in the interval from –500 to –100 ms with respect to stimulus presentation. 431 

We classified previous (n-1) responses from the EEG activity elicited by the current (n) trial. 432 

Before classification, we filtered the entire time series of 111 ± 18 minutes across participants, 433 

in a low-beta range (14 to 20 Hz) and calculated the amplitude of the analytic envelope using 434 

the Hilbert transform (Fig. 3). For the second decoding procedure (Fig. 5) we filtered narrowly 435 

around frequencies from 4 to 20 Hz at 1 Hz steps (Type II Chebyshev window, 1024th order, 436 

passband 0.5 Hz above and below the selected frequency, stopband 1 Hz above and below 437 

the selected frequency, sidelobe magnitude factor 50 dB). We down-sampled trials to 50 Hz, 438 

obtaining 150 time points from –500 to 1000 ms, synchronized to face stimulus presentation. 439 

To boost signal-to-noise ratio, we averaged 5 trials of the same class together (as in Foster et 440 

al., 2016), obtaining our final classification samples. We used binary support vector machine 441 

(SVM) classifiers with linear kernel (the MATLAB fitcsvm function), using the 32 electrode 442 

locations as features for classification. Samples were split in 5 folds, with a 4:1 training to 443 

testing ratio (196 ± 14 SD samples in the training set per observer). The procedure was 444 
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repeated 5 times, rotating which fold was used for testing. The whole decoding procedure 445 

was repeated 100 times, generating new samples every time by averaging random sets of 5 446 

trials together. This allowed us to minimize lucky splits of the data and assess accuracy by 447 

averaging over a large number of guesses (24,519 ± 141 SD guesses per observer).  448 

We assessed temporal generalization by testing classifiers across all time points, obtaining a 449 

matrix of accuracy across training and testing times per participant. We averaged accuracy 450 

across participants and extracted matrix diagonals to show the dynamics of previous response 451 

signals. Statistical power was defined by t-tests against 50% accuracy across training and 452 

testing time. To correct for multiple comparisons, we permuted class labels at the level of 453 

testing, obtaining a set of 2000 temporal generalization matrices under the null hypothesis. 454 

For each matrix, we noted how many adjacent points survived a t-test against 50% accuracy, 455 

generating a distribution of cluster sizes. Calculating the 95th percentile of this distribution, 456 

we obtained a threshold of cluster size. All clusters smaller than the identified thresholds were 457 

deemed non-significant. 458 

Activation patterns show the relative relevance of electrode sites for classification, giving 459 

qualitative insight on model dynamics. Activation patterns were calculated as follows: 460 

𝐴 = 𝛽 ∗ 𝑋$    eq. 2 461 

Where b are classifier coefficients and XT is the transposed matrix of EEG signal of tested data. 462 

Classifiers trained on all trials were then tested on 2 subsets of trials: androgynous trials to 463 

which observers responded “male” and androgynous trials which observers responded 464 

“female”. Class labels within these conditions were again responses to the previous trial. As 465 

trials in the two conditions are likely trials where serial biases were more present, this testing 466 

procedure highlighted whether the information is stronger in male-biased or female-biased 467 

trials. 468 

 469 
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