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Time estimation during motor
activity
Ottavia D’Agostino, Serena Castellotti and
Maria Michela Del Viva*

Department of Neurofarba, University of Florence, Florence, Italy

Several studies on time estimation showed that the estimation of temporal

intervals is related to the amount of attention devoted to time. This is explained

by the scalar timing theory, which assumes that attention alters the number of

pulses transferred by our internal clock to an accumulator that keeps track of the

elapsed time. In a previous study, it was found that time underestimation during

cognitive-demanding tasks was more pronounced while walking than while

sitting, whereas no clear motor-induced effects emerged without a concurrent

cognitive task. What remains unclear then is the motor interference itself on time

estimation. Here we aim to clarify how the estimation of time can be influenced

by demanding motor mechanisms and how different motor activities interact

with concurrent cognitive tasks during time estimation. To this purpose, we

manipulated simultaneously the difficulty of the cognitive task (solving arithmetic

operations) and the motor task. We used an automated body movement that

should require no motor or mental effort, a more difficult movement that

requires some motor control, and a highly demanding movement requiring motor

coordination and attention. We compared the effects of these three types of

walking on time estimation accuracy and uncertainty, arithmetic performance,

and reaction times. Our findings confirm that time estimation is affected by the

difficulty of the cognitive task whereas we did not find any evidence that time

estimation changes with the complexity of our motor task, nor an interaction

between walking and the concurrent cognitive tasks. We can conclude that

walking, although highly demanding, does not have the same effects as other

mental tasks on time estimation.

KEYWORDS

duration estimation, walking, motor load, motor-cognitive interference, time estimation

Introduction

Everyday situations require the ability to perform two or more tasks at the same time,
such as walking and using mobile phones, driving and talking, cooking while listening to the
news. A large body of evidence shows interactions between motor and cognitive domains. It
has been demonstrated that simultaneously performing motor and cognitive tasks leads to
the decline of one or both performances [for a review, see (Al-Yahya et al., 2011)]. The most
common paradigm for studying motor-cognitive interference is the concurrent performance
of hand movements and verbal assignment (Simon and Sussman, 1987; Hiscock et al., 1989;
Serrien, 2009; Matheson et al., 2014). For instance, hand movements affect verbal counting
performance (Serrien, 2009), visual processing capacity (Künstler et al., 2018), object-naming
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(Matheson et al., 2014; Koester and Schack, 2016), speech tasks
(Dromey and Benson, 2003), and working memory (Spiegel et al.,
2013; Logan and Fischman, 2015).

Some studies also used other motor tasks such as maintaining
balance or walking [for a review see (Bayot et al., 2018)].
These gross motor functions have traditionally been considered
automatic activities that do not require the involvement of
cognitive processing in young healthy adults (Paul et al., 2005;
Bridenbaugh and Kressig, 2011; Clark et al., 2015). However, this
assumption has been challenged by some evidence highlighting that
they are complex mechanisms requiring cognitive and attentional
processes [(Lajoie et al., 1993; Ebersbach et al., 1995; Woollacott
and Shumway-Cook, 2002; Plummer et al., 2015; Pizzamiglio et al.,
2017; Herold et al., 2018; Nieborowska et al., 2019), for a review,
see (Leone et al., 2017)]. For example, Ebersbach et al. (1995)
investigated the effect of different tasks (cognitive, fine motor,
and combined tasks) on walking, finding that only combined
mental and fine motor demands interfere with the regulation of
balance during walking, suggesting that the effect of a concurrent
task on gross body movements depended on the difficulty of the
secondary task. On the other end, walking and balance control
reduce cognitive abilities, such as solving math operations (Chong
et al., 2010; Castellotti et al., 2022).

However, most of these studies only used simple motor tasks,
using people’s normal speeds and rhythm. Only a few studies
investigate the effect of motor task difficulty on cognitive tasks,
finding controversial results. For example, Kelly et al. (2010) did
not find any influence of walking difficulty on the performance in
auditory stroop task. On the contrary, Lindenberger et al. (2000)
required participants to perform memory encoding while walking
through two tracks with different path complexity, finding that the
higher the walking difficulty the stronger the interference with the
cognitive performance.

In everyday life, one common cognitive activity that humans
perform while walking is perceiving elapsed time. Time perception,
defined as the subjective experience of the passage of time, plays
a crucial role in human life, and it is affected by many contextual
variables (Block, 2003; Block and Zakay, 2008; Wittmann, 2009;
Block et al., 2010; Grondin, 2010; Sucala et al., 2010; Merchant
et al., 2013; Matthews and Meck, 2014). Humans’ ability to estimate
temporal duration has been broadly investigated, mainly using brief
time intervals, in the order of 10–100 ms or order of seconds, while
a few explored temporal estimations of intervals in the range of
minutes [for reviews, see (Buhusi and Meck, 2005; Ivry and Schlerf,
2008; Baldauf et al., 2009; Grondin, 2010; Matthews and Meck,
2016)].

Overall, the literature agrees with the hypothesis that time
estimation involves the presence of an internal clock (Gibbon
et al., 1984; Wearden, 1999; Buhusi and Meck, 2005). In this view,
there is a pacemaker that produces pulses, which are accumulated
in a counter, and the number of pulses counted determines the
perceived length of an interval (Rammsayer and Ulrich, 2005).
According to the scalar expectancy theory (Gibbon, 1977; Wearden,
2003), in addition to the initial clock process, there are two further
levels: the memory and the decision-making stage (Meck, 2003).
The timing errors are due either to a change in the pacemaker’s rate
or to attentional resource allocation to the timing task [attention
allocation model, (Zakay et al., 1983; Brown and West, 1990; Macar
et al., 1994)].

A wide range of research involving dual task paradigms
demonstrated a shortening of perceived time with the increasing
of the concurrent task difficulty (Brown, 1985; Zakay and Tsal,
1989; Rammsayer and Ulrich, 2005; Castellotti et al., 2022); indeed,
as theorized by the attention allocation model, paying attention
only to time induces temporal overestimation, whereas diverting
attention away from time causes time underestimation, with a
positive relationship with the difficulty level of the concurrent non-
temporal tasks [(Burnside, 1971; Thomas and Weaver, 1975; Macar
et al., 1994), for reviews, see (Block et al., 2010; Gu et al., 2015)].

Some behavioral data suggest a more complex framework, as
theorized by the working memory model (Baddeley, 2002) and the
multiple resource model (Wickens, 2002). For instance, a recent
study by Polti et al. (2018) tried to distinguish the role of WM and
attention in time estimation testing real human activities duration.
They used durations up to 90 s while participants had to attend
only to time (single task) or to perform an N-back WM-task,
finding a significant underestimation, proportional to WM load,
in the dual task condition. Also, Brown (1997) tested temporal
reproduction of intervals on the order of seconds while performing
three different non-temporal tasks and found that the temporal
performance was disrupted by all three cognitive tasks, whereas
only mental arithmetic was disrupted by timing (Brown, 1997).
This could be explained by the fact that temporal estimation and
mental arithmetic compete for the same resources, causing mutual
interference (Brown, 1997; Block, 2003).

Only recently, some studies have investigated whether temporal
perception can be affected by motor processes, mainly using
fine movements. Indeed, many of them tested the effects of
hand movements on judging short durations of auditory (Yon
et al., 2017) and visual stimuli (Yokosaka et al., 2015; Tomassini
and Morrone, 2016), finding that time distortions are linked
to the motor system. So far, to our knowledge, only a few
studies investigated how time estimation is affected by gross body
movement like walking (Kroger-Costa et al., 2013; Sayali et al.,
2018; Spapé et al., 2022). Overall, they found overestimation of
temporal durations during walking and speculated that movement
speeds up the internal clock (Kroger-Costa et al., 2013; Sayali et al.,
2018; Spapé et al., 2022).

In our previous study, for the first time, we combined time
estimation of long durations (up to 2 min), four different cognitive
tasks of increasing difficulty, and two different motor conditions
(Castellotti et al., 2022). Our results showed that, when participants
were sitting on a chair (absence of motion), they tended to
underestimate durations during cognitive-demanding tasks and
overestimate durations while attending only to time [in line with
the attentional allocation model (Grondin, 2010; Allman et al.,
2014; Matthews and Meck, 2016)]. Also, estimation uncertainty
increased linearly with time estimates in all tasks, in agreement
with the scalar timing theory (Buhusi and Meck, 2005; Grondin,
2010; Matthews and Meck, 2014). When participants were walking,
estimation bias during mental tasks was more pronounced, as
well as estimation uncertainty, whereas no clear motor-induced
effects emerged without a concurrent cognitive task. Overall, it
seemed that the motor load adds somehow to the cognitive load
in distorting temporal judgment, but whether the motor tasks
themselves interfere with time estimation remains unclear. We
could hypothesize that a demanding walking activity might require
a sufficient amount of attention to affect time estimation per se

Frontiers in Human Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1134027
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1134027 April 17, 2023 Time: 14:33 # 3

D’Agostino et al. 10.3389/fnhum.2023.1134027

in the absence of another concurrent cognitive task. According
to the scalar timing theory, this would mean that walking tasks
might directly open the switch, causing a loss of pulses and thus
decreasing the perceived duration, as well as other demanding
cognitive tasks do. In the previous study, we did not observe this
effect, maybe due to the relatively automatic walking task used in
the experiment.

The exact nature of the interaction between walking activity and
other cognitive tasks (e.g., linear or non-linear) and the relative
amount of attention dedicated to the two processes still remain
unclear. The observed smaller effect exerted by the motor vs.
cognitive task suggests a larger amount of attention dedicated to the
latter. However, by using just one type of relatively automatic motor
activity, we could not deduce the nature and the relative strength of
the interaction (Castellotti et al., 2022).

For these reasons, here we manipulate simultaneously the
difficulty of the cognitive task, requiring solving mathematical
operations of increasing difficulty, and that of the concurrent motor
task, testing three different types of walking: forward regular-
speed walking, forward irregular-speed walking, and backward
irregular-speed walking. We then compare the effects of these
three types of walking on time estimation, by measuring accuracy
and uncertainty. If the walking activity directly affects time
estimation, in the absence of another cognitive task, we expect
larger time underestimations and larger uncertainties for backward
irregular-speed walking than for forward regular-speed walking. By
comparing the effects of different combinations of difficulty levels
of the two tasks, it would be also possible to shed some light on the
nature and strength of their interactions.

The findings of this work will highlight whether complex
body movements can interfere with time estimation and clarify
how different motor and cognitive processes interact during
time estimation.

Materials and methods

Participants

Fifteen young adults (µ = 24.8 years, SE = 0.8) participated
in the experiment. All the participants were university students,
naïve to the purpose of the study and they had given written
informed consent prior to participation. They were also required
to possess a valid medical certificate for the physical activity
involved. Before data collection, they were asked to fill out a
questionnaire regarding personal data, expertise in some specific
fields (e.g., sport or music), sleeping habits, presence of any optical
damage or pathological disorders (e.g., dyscalculia), medication
intake (e.g., psychotropic drugs or sleeping pills). They were
also asked to subjectively rate their math-anxiety level and their
ability in solving mathematical operations, on a 7-point Likert
scale. All participants had normal or corrected-to-normal visual
acuity, did not take any type of medication, did not present any
brain damage, and were free of cognitive disorders. All reported
having a regular sleep-wake cycle (average night sleep duration
of 7.5 ± 0.3 h). None of them was a professional athlete or
musician and they reported, on average, having good ability in
solving mathematical sums (µ = 4.7, SE = 0.4) and low math

anxiety (µ = 2.1, SE = 0.3) Participants were asked to wear light
sporting clothes and comfortable shoes during the experimental
session and to not assume stimulating substances the night before
the experiment. Before each experimental session, they were asked
to rate their stress level and their mental and physical tiredness, on
a 7-point Likert scale.

The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the local ethics committee
(“Commissione per l’Etica della Ricerca”, University of Florence, 7
July 2020, n. 111”).

Setup

Participants walked on a JK Fitness treadmill (Supercompact
48 model, 48 × 130 cm walking belt), positioned 80 cm away
from the display, that subtended 43◦ × 24◦ of visual angle.
Stimuli were programmed and displayed on an iMac Retina 5K
27-inch [mid 2015, 3.3 GHz Intel Core i5 processor, MacOs
Mojave software 10.12.6 (Cupertino, CA, USA), frame rate 60 Hz,
5,120 × 2,880 pixels resolution]. Participants’ responses were
entered on a computer keyboard by the experimenter. The
experimenter measured the participants’ head temperature through
a non-contact infrared thermometer (Berrcom, JXB-178 model).
Software for presentation of stimuli and data collection was
developed using the Psychophysics Toolbox extensions for Matlab
(R2018b version; Natick, MA, USA: The MathWorks Inc.).

Procedure and conditions

The entire experiment required three sessions of 2 h
per participant on three different days, one for each motor
condition: (1) forward regular-speed walking, (2) forward
irregular-speed walking, and (3) backward irregular-speed
walking (Figure 1A). The first is an automated movement
performed without any particular effort (Paul et al., 2005;
Bridenbaugh and Kressig, 2011; Clark et al., 2015): each
participant freely chose the most comfortable walking speed
by adjusting it on the treadmill console before starting the
session. The average speed chosen is 2.5 ± 0.2(SE) km/h. The
second requires some motor control and body balance since
the speed changes unpredictably for the walker; indeed, the
experimenter randomly changed it every 1–3 s, in the range from
2 to 8 km/h (maximum speed to avoid running). The third is
a very unusual movement for humans and can be considered
highly demanding because it requires attention to be implemented
and continuous motor control to adapt to the random change
of speed; indeed, during the session, we randomly varied the
speed of the treadmill in the range from 1 to 5 km/h. At the
beginning of the backward irregular-speed walking condition,
participants could get familiar with the required unusual body
movement.

While walking, participants were asked to pay attention to
the passing of time and perform three different cognitive tasks
of increasing difficulty. Each trial started with the instructions
explaining the task to be performed from the appearance of the
Start-symbol (2 × 2◦ green circle presented in the center of the
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FIGURE 1

Procedure and tasks. (A) Motor conditions. From left to right: forward regular-speed walking, forward irregular-speed walking, backward
irregular-speed walking. (B) Easy task. (C) Hard task. In the instructions, the red word indicates the cognitive task to be performed. The green circle
indicates the beginning of time estimation; the red circle indicated the stop of time estimation.

screen for 800 ms) informing the participant to start estimating
the passing of time, to the End-symbol (red circle) informing to
stop temporal estimation. The least demanding task required to
fixate at a small point (0.2 × 0.2◦) presented on the screen center
(Figure 1B). The task of medium difficulty consisted in solving easy
mathematical sums of a 1-digit number plus a 2-digit number (e.g.,
13+4). The result of the operations was never higher than 100. The
most difficult tasks consisted in solving hard mathematical sums of
a 2-digit number plus a 2-digit number with carryover (e.g., 38+49,
Figure 1C). In both solve tasks, math operations (5 × 3◦) were
presented on a gray background and participants had 6 s to give the
solutions. The experimenter pressed a key to record the response
time and entered the participants answer. Then, a blank screen was
presented for 1 s before the next operation (Figure 1C). At the end
of each trial, after the stop symbol, a “time ruler” appeared on the
screen, showing three scales of seconds from 0 to 60, one for each
minute, along with the question “How much time has passed?” We
use a verbal estimation paradigm, as it is the ecological way humans
use to judge the passing of time and it does not interfere with body
movements. Participants’ responses were typed by the experimenter
on the keyboard. The time ruler has been used to promote a finer
time response by participants (see Supplementary Figure 1).

Since human activities require more than just a few seconds
and our interest was to test how humans estimate time in real-life
situations, we test long temporal intervals. Specifically, we tested
random durations along a continuum in the range of 15–120 s; the
two extreme values were always presented at least once in each task,
whereas the other durations to be tested were randomly selected
(with integer values of seconds).

Participants performed a total of 135 trials (15 for each
cognitive task, for each motor condition). The order of the motor
conditions was randomly assigned: as a result, five participants
performed the forward regular-speed walking first, six performed
the forward irregular-speed walking first, four the backward
irregular-speed walking condition first. Each experimental session
was divided into nine blocks, interspersed with short breaks. At the
beginning of each block, experimenters checked the participant’s
body temperature. At the end of each block, experimenters asked

participants to rate their level of physical and mental fatigue on
a 7-point Likert scale, to ensure that participants were not under
physical tiredness or attentional loss. Also, the room temperature
was checked every 30 min, ensuring that it remained stable
throughout the whole session.

Data processing and statistical analysis

For each trial, we recorded the real elapsed time and the
participant’s time estimation.

First, time estimates of each participant were fitted with
a 2-parameter linear function (minimum least squares fit) to
give individual average estimates as a function of elapsed time.
Then, to measure the dependency of estimation uncertainty on
duration, for each participant and condition, we calculated the
residuals (root mean square errors, RMSE) of time estimation
with respect to individual average estimates. At this point, for
each condition, we pooled together residuals of all participants,
and we averaged them in intervals of 21 s. Since the dispersion
along the mean increases with time we calculated the error
within each bin as RMSE∗(1/

√
2 ∗ N). Finally, we fitted binned

data with a linear function with 2 parameters (minimum
least squares fit). To assess whether RMSE increases with
duration we tested whether the slopes of the fitting curves
were compatible with zero (z-tests). To investigate whether the
trends of RMSE in each task and walking condition were the
same, the slopes of the fits have been statistically compared with
z-tests.

We then calculated the time difference in seconds between
estimated and effective durations (estimation bias). For each
cognitive task in the three motor conditions, the estimation biases
of all participants were averaged in intervals of 21 s and fitted
with a 2-parameter linear function (minimum least squares fit). To
assess the role of our variables in time estimation, we performed
a general linear mixed-effects model (GLMM) pooling estimation
biases of all participants together, with bias as the outcome variable,
and cognitive task (three levels: easy, medium, hard), motor
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condition (three levels: forward regular-speed walking, forward
irregular-speed walking, and backward irregular-speed walking)
and durations (continuous) as fixed effects. We also included
the variable participants as the random effect. Pairwise post-hoc
comparisons between categorical factors were assessed by using
t-tests with Bonferroni’s correction. Post-hoc comparisons between
continuous and categorical variables were assessed with z-tests.

For the medium and hard tasks, we also measured correct
responses and the response times for math operations, to assess
possible influences of motor tasks on cognitive performance. The
averaged percentages of correct responses and response times
were compared with two-way ANOVA analyses, with factors;
motor condition (three levels: forward regular-speed walking,
forward irregular-speed walking and backward irregular-speed
walking) and task difficulty (two levels: medium and hard). The
p-values obtained from post-hoc analyses were adjusted using the
Bonferroni correction.

To test the retrospective power of our observed effect based on
the sample size and parameter estimates derived from the given
data set, we performed a post-hoc power analysis for a general
linear model (with 3 regressors) using G∗ Power3 (Erdfelder et al.,
2009), by deriving the effect size from R-squared R2. Based on the
consideration that simpler models are less sensitive than mixed
models, we can reasonably infer that the result found with general
linear model is valid also for our mixed model.

Matlab (R2018b version) and Excel (16 version) software were
used for data processing, data fitting, and graphs’ creation. JASP
(Version 0.8.6), G∗Power (3.1.9.4), and R (4.0.3) software were used
for statistical analyses.

Results

In this study, participants are asked to perform cognitive tasks
of different difficulties and estimate durations of up to 2 min, while
being concurrently subjected to motor tasks of different difficulties.
Raw data from all participants for each cognitive task (easy: looking
at the screen; medium and hard: solving simple or hard sum
operations) in all motor conditions (forward regular-speed walking,
forward irregular-speed walking, and backward irregular-speed
walking) are reported in Figure 2.

A close inspection of Figure 2 shows that participants behave
very differently from each other: individual participants with high
(or low) time estimates in one condition tend to maintain high (or
low) estimates in all the other conditions (see different color lines in
all panels). Therefore, to measure accuracy and precision, we need
to take into account individual variability before averaging the data.

In Figure 3 we then reported root mean square errors (RMSE)
with respect to individual average estimates. Statistics show that,
for each cognitive task and motor condition, RMSE increases with
duration (easy task: forward regular z = 2.6, p = 0.004; forward
irregular z = 5.6, p < 0.001; backward irregular z = 5, p < 0.001;
medium task: forward regular z = 3.8, p < 0.001; forward irregular
z = 5, p < 0.001; backward irregular z = 2.5, p = 0.005; hard
task: forward regular z = 14, p < 0.001; forward irregular z = 6.6,
p < 0.001; backward irregular z = 3, p = 0.001). For each walking
condition, there are no significant differences between tasks (all
p > 0.05). We found differences between walking conditions only
in the hard cognitive task (forward regular vs. forward irregular:
z =−4.9, p < 0.001; forward regular vs. backward irregular: z = 2.6,

FIGURE 2

Time estimation in different motor and cognitive tasks. Each colored fit line is the average time estimate of the same participant. Dots indicate the
forward regular-speed walking condition (left panels); triangles indicate the forward irregular-speed walking condition (middle panels); squares
indicate the backward irregular-speed walking condition (right panels). Dashed black lines represent exact estimations. (A) Easy task. (B) Medium
task. (C) Hard task.
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FIGURE 3

Estimation uncertainty as a function of duration. Estimation uncertainty increases with duration, similarly for each cognitive task and motor
condition. The graphs show the root mean square errors (RMSE), computed on 21 s intervals, for all cognitive and motor tasks with their best-fit
curves. Solid lines and dots represent the forward regular-speed walking condition; dotted lines and triangles represent the forward irregular-speed
walking condition; dashed lines and squares represent the backward irregular-speed walking condition. (A) Easy task (number of occurrences in
each bin—forward regular walking: 67, 27, 26, 23, and 82; forward irregular walking: 63, 29, 44, 37, and 52; backward walking: 69, 35, 26, 42, and 53).
Goodness of fit—forward regular walking: R2 = 0.7; forward irregular walking: R2 = 0.9; backward walking: R2 = 0.9. (B) Medium task (number of
occurrences in each bin—forward regular walking: 47, 17, 45, 49, and 66; forward irregular walking: 63, 36, 53, 24, and 49; backward walking: 48, 29,
53, 42, and 52). Goodness of fit – forward regular walking: R2 = 0.8; forward irregular walking: R2 = 0.9; backward walking: R2 = 0.7. (C) Hard task
(number of occurrences in each bin—forward regular walking: 72, 37, 15, 53, and 48; forward irregular walking: 54, 44, 30, 46, and 51; backward
walking: 64, 22, 29, 44, and 66). Goodness of fit—forward regular walking: R2 = 0.9; forward irregular walking: R2 = 0.9; backward walking: R2 = 0.7.

p = 0.004; forward irregular vs. backward irregular: z = −3.9,
p < 0.001).

Regardless of the motor condition, Figure 2 also shows that
temporal estimations tend to be accurate while participants pay
attention only to time (easy task, Figure 2A), whereas they perceive
shorter duration while performing demanding cognitive tasks
(medium and hard tasks, Figures 2B, C). The estimation biases
for each task, averaged across participants, are then reported in
Figure 4. We conducted a GLMM analysis after pooling estimation
biases of all participants together (see Data processing below for
details). First, the model reveals a main effect of the cognitive
task (χ2(2) = 122.2, p < 0.001), confirming that the bias depends
on its level of difficulty. Pairwise post-hoc comparisons show
significant differences between all cognitive tasks (easy vs. medium:
t = 7.7, p < 0.001; easy vs. hard: z = 11.1, p < 0.001; medium
vs. hard: t = 3.2, p = 0.004). GLMM also reveals a significant
effect of duration (χ2(1) = 104.1, p < 0.001), and a significant
interaction between task and duration (χ2(2) = 42.9, p < 0.001).
Underestimation increases with durations only in the medium
(z =−7.2, p< 0.001, see Figure 4B) and in the hard tasks (z =−9.7,
p < 0.001, see Figure 4C). No significant effect of walking emerged
(χ2(2) = 2.7, p = 0.2), indicating that biases do not depend on the
difficulty of the walking task. Marginal means and contrasts are
reported in Supplementary Table 1. A post-hoc power analysis with
effect size f 2 = 0.49, alpha = 0.05, and sample size = 15 returns a
power of 0.81, confirming the appropriate statistical power of the
above results.

Finally, we analyzed correct responses (Figure 5A) and
response times (Figure 5B) to math sums in the medium and hard
tasks. In the medium task, the percentage of correct responses
averaged over participants and durations is almost 100% for
all walking conditions, while in the hard task, the percentage
of correct responses drops to about 90% (Figure 5A). ANOVA
(two factors: motor condition—three levels: forward regular-speed
walking, forward irregular-speed walking, and backward irregular-
speed walking—and task difficulty—two levels: medium and hard)

confirms that correct responses differ across the two cognitive tasks
(F(1,14) = 12.3, p = 0.003, η2 = 0.3) but they do not depend on the
motor condition [F(2,28) = 0.7, p = 0.4, η2 = 0.008]. In the hard
task, response times averaged over participants and durations are
almost double than in the medium task for all walking conditions
(Figure 5B). ANOVA confirms that response times depend on the
cognitive tasks [F(1,14) = 122.1, p < 0.001, η2 = 0.9] but not on the
motor condition [F(2,28) = 0.5, p = 0.6, η2 = 0].

Discussion

Time estimation has been extensively studied for well over a
century but the way in which we code temporal information is
still little understood. Several pieces of evidence show that time
estimation depends on many contextual variables and is distorted
by concurrent cognitive and motor tasks (Block, 2003; Buhusi and
Meck, 2005; Block and Zakay, 2008; Ivry and Schlerf, 2008; Baldauf
et al., 2009; Wittmann, 2009; Block et al., 2010; Grondin, 2010;
Sucala et al., 2010; Merchant et al., 2013; Matthews and Meck, 2014,
2016).

In our previous study (Castellotti et al., 2022), walking induced
a higher estimation uncertainty and a larger underestimation of
long durations only during the execution of demanding cognitive
tasks, with respect to the sitting condition. We speculated that
the motor task increases somehow the weight of the concurrent
cognitive effort, leading to additional openings of the switch and,
consequently, to a lower number of accumulated pulses than in
sitting conditions (Castellotti et al., 2022). In this previous work,
however, we compared a relatively automatic motor condition with
a condition where motion was absent, therefore the cognitive loads
due to the motor tasks were relatively lower than those due to the
mental tasks and therefore not quite comparable.

For this reason, in the present study, we manipulated the
difficulty of the motor task, setting an automated body movement
that requires no motor or mental effort (Paul et al., 2005;
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FIGURE 4

Averaged estimation bias in different motor and cognitive tasks. Underestimation increases with cognitive load but does not change with the
difficulty of the motor task. The graphs show the estimation bias, computed on 21 s intervals, for all cognitive and motor tasks with their best-fit
curves. Error bars are SE across participants. Solid lines and dots represent the forward regular-speed walking condition; dotted lines and triangles
represent the forward irregular-speed walking condition; dashed lines and squares represent the backward irregular-speed walking condition.
Dashed black lines represent exact estimations. (A) Easy task (forward regular-speed walking: slope = –0.04 ± 0.04, intercept = 4.4 ± 2.2; forward
irregular-speed walking: slope = 0.004 ± 0.05, intercept = 1.7 ± 3.1; backward irregular-speed walking: slope = 0.01 ± 0.03, intercept = –0.6 ± 1.6).
(B) Medium task (forward regular-speed walking: slope = –0.2 ± 0.03, intercept = 3.1 ± 1.3; forward irregular-speed walking: slope = –0.15 ± 0.05,
intercept = 4.9 ± 3.2; backward irregular-speed walking: slope = –0.2 ± 0.03, intercept = 1.6 ± 1.8). (C) Hard task (forward regular-speed walking:
slope = –0.3 ± 0.08, intercept = 5.6 ± 4.2; forward irregular-speed walking: slope = –0.2 ± 0.04, intercept = 4.2 ± 2.8; backward irregular-speed
walking: slope = –0.3 ± 0.06, intercept = 3.6 ± 3.1).

FIGURE 5

Performance for math operations in the three motor conditions. Correct responses and reaction times change with cognitive load but do not
change with the difficulty of the motor task. Green: medium task; orange: hard task. Solid bars correspond to the forward regular-speed walking;
dotted bars correspond to the forward irregular-speed walking; striped bars correspond to the backward irregular-speed walking. (A) Percentage of
correct responses. (B) Response times. Asterisks mark statistically significant differences with ANOVAs: ∗∗p < 0.01, ∗∗∗p < 0.001. Error bars are SE
across participants.

Bridenbaugh and Kressig, 2011; Clark et al., 2015) (forward regular-
speed walking), a more difficult movement requiring some motor
control and body balance due to unpredictable speed changes
(forward irregular-speed walking), and a highly demanding
movement requiring continuous motor control to adapt to
random speed changes (backward irregular-speed walking). We can
reasonably assume that these different types of walking require a
progressive increase of attentional load. We also combined these
motor tasks with three cognitive tasks of increasing difficulty.

Our purpose was to investigate the influence of motor and
cognitive task difficulty on time estimation. We assume that
walking activity, as well as other mental tasks, need allocation of
attention (Malouin et al., 2003) and therefore might affect temporal

judgments with increasing distortions as a function of its difficulty,
as predicted by the attentional allocation model (Grondin, 2010;
Allman et al., 2014; Matthews and Meck, 2016). That is, walking
activity could independently act on the switch to alter the number
of pulses transferred to the accumulator (Gibbon, 1977; Meck,
2003; Wearden, 2003).

We first measured estimation uncertainty, finding that,
according to the scalar timing theory (Gibbon, 1977; Meck, 2003;
Wearden, 2003), it increases linearly with time. The increase
of variability with duration is the same for all cognitive tasks.
In the easy and in the medium cognitive tasks, uncertainties
do not vary with motor conditions. In the hard cognitive task,
uncertainties differ between motor conditions, being highest for
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forward irregular walking. This effect could be due to the higher
speeds of walking involved in this condition (Karşilar et al., 2018).

We then analyzed estimation accuracy by measuring the
estimation bias. The results confirm that the difficulty of the
cognitive task affects estimation, with increasing underestimation
with task difficulty (Polti et al., 2018; Castellotti et al., 2022).
The trend of the estimation bias is also in line with previous
findings: in the easy task, estimation bias remains constant across
durations (Polti et al., 2018; Castellotti et al., 2022), while in
harder tasks underestimation scales with durations, so that the
longer durations were more underestimated than the shorter ones
(Matthews and Meck, 2016; Polti et al., 2018; Castellotti et al., 2022).
Time distortions induced by mental calculation might depend on
the role of the right parietal cortex, which is consistently implicated
in mathematical cognition (Wu et al., 2009), and time estimation
(Hayashi et al., 2018). We did not find evidence of any effect of
motor tasks on temporal judgments, even in the most demanding
one, independently of the presence or absence of a concurrent
cognitive task.

Particularly, even the continuous attention needed to perform
a demanding non-automatic walking task alone does not seem
to be able to alter the counting of time, as other cognitive tasks
do (Brown, 1997; Polti et al., 2018). A possible explanation could
be that the neural mechanisms involved in walking are not able
to directly open the switch, that would produce a loss of pulses
and thus a decrease in the perceived duration, as predicted by the
scalar timing theory (Gibbon, 1977; Meck, 2003; Wearden, 2003).
Alternatively, our non-automatic walking, although irregular and
backward, might require a much smaller amount of attention than
that needed by other mental tasks, as those involving working
memory or arithmetic operations.

Since we did not find evidence of differential effects induced by
diverse types of walking on temporal judgments, it has not been
possible to study the nature of the interactions between motor and
cognitive processes on time estimation.

The results of the current study are hard to frame in the
existing literature on time estimation during motor activity. Few
studies are not in line with the attentional allocation model,
finding an overestimation of temporal durations during walking,
and suggest that walking speeds up the internal clock, probably
due to its physiological effects (Kroger-Costa et al., 2013; Sayali
et al., 2018). However, they used non-ecological paradigms for
the study of time estimation, either using very short durations
(much less than 1 s; (Kroger-Costa et al., 2013)) or reproduction
methods (Sayali et al., 2018). Therefore, their results are hardly
comparable to ours. Other studies, instead, have found duration
underestimation of short intervals (in the order of ms) induced by
hand movements (Yokosaka et al., 2015; Tomassini and Morrone,
2016; Yon et al., 2017), suggesting that this particular motor activity
is able to decrease attention to time, serving as secondary task. The
difference with our results could be then explained by the fact that
fine movements involve different motion circuits (Tomassini and
Morrone, 2016) and probably require a larger attentional load than
gross body movements like walking. In future studies then, one
should use more complex motor actions (e.g., reproducing hand
movements sequences), in the absence of other cognitive tasks to
verify that time underestimation is replicated also at longer time
intervals (in the order of secs), and with a concurrent cognitive task
to uncover possible interaction between them.

Although cognitive performance is deteriorated by demanding
postural or walking tasks (Shumway-Cook and Woollacott, 2000;
Castellotti et al., 2022), here we did not find any effect of different
walking types either on the number of correct responses or time
responses. This result might further suggest that the manipulation
introduced here, however, effective it may seem in making the
motor task difficult and non-automatic, is mostly ineffective at
influencing the subject’s responses.

To conclude, from our results we can infer that executing
walking tasks, even demanding as walking backward at an irregular
randomly-changed speed, cannot be considered in the same way
as other demanding cognitive tasks, like solving hard operations
(Castellotti et al., 2022) or memorizing past items (Polti et al., 2018),
in distorting time estimation.
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