• Full Screen
  • Wide Screen
  • Narrow Screen
  • Increase font size
  • Default font size
  • Decrease font size

Join Us on Facebook

E-mail Print PDF

Giovanni Anobile

Post-Doc in Cognitive Science, University of Florence


  • Email: GiovanniAnobile (AT) hotmail.it
  • Telephone:  +39 050 3153175

Research laboratories

  • CNR Institute of Neuroscience, Pisa
  • Department of Psychology, University of Florence
  • Stella Maris Foundation, Pisa, Italy


  • 2009: Italian Master Degree in Experimental Psychology. Summa cum laude. University of Florence.
  • 2007: Italian Degree in Experimental Psychology. University of Florence.

Current research and interests

  • Numerosity perception
  • Multi-sensory perception
  • Dyscalculia
  • Attention



Anobile, G., Castaldi, E., Turi, M., Tinelli, F. & Burr, D. C. (2016). Numerosity but not texture-density discrimination correlates with math ability in children, Dev Psychol, 8 (52), 1206-1216. PDF

Considerable recent work suggests that mathematical abilities in children correlate with the ability to estimate numerosity. Does math correlate only with numerosity estimation, or also with other similar tasks? We measured discrimination thresholds of school-age (6- to 12.5-years-old) children in 3 tasks: numerosity of patterns of relatively sparse, segregatable items (24 dots); numerosity of very dense textured patterns (250 dots); and discrimination of direction of motion. Thresholds in all tasks improved with age, but at different rates, implying the action of different mechanisms: In particular, in young children, thresholds were lower for sparse than textured patterns (the opposite of adults), suggesting earlier maturation of numerosity mechanisms. Importantly, numerosity thresholds for sparse stimuli correlated strongly with math skills, even after controlling for the influence of age, gender and nonverbal IQ. However, neither motion-direction discrimination nor numerosity discrimination of texture patterns showed a significant correlation with math abilities. These results provide further evidence that numerosity and texture-density are perceived by independent neural mechanisms, which develop at different rates; and importantly, only numerosity mechanisms are related to math. As developmental dyscalculia is characterized by a profound deficit in discriminating numerosity, it is fundamental to understand the mechanism behind the discrimination.

Cicchini, G. M., Anobile, G. & Burr, D. C. (2016). Spontaneous perception of numerosity in humans, Nat Commun, (7), 12536. PDF

Humans, including infants, and many other species have a capacity for rapid, nonverbal estimation of numerosity. However, the mechanisms for number perception are still not clear; some maintain that the system calculates numerosity via density estimates-similar to those involved in texture-while others maintain that more direct, dedicated mechanisms are involved. Here we show that provided that items are not packed too densely, human subjects are far more sensitive to numerosity than to either density or area. In a two-dimensional space spanning density, area and numerosity, subjects spontaneously react with far greater sensitivity to changes in numerosity, than either area or density. Even in tasks where they were explicitly instructed to make density or area judgments, they responded spontaneously to number. We conclude, that humans extract number information, directly and spontaneously, via dedicated mechanisms.

Anobile, G., Arrighi, R., Togoli, I. & Burr, D. C. (2016). A shared numerical representation for action and perception, Elife, (5), PDF

Humans and other species have perceptual mechanisms dedicated to estimating approximate quantity: a sense of number. Here we show a clear interaction between self-produced actions and the perceived numerosity of subsequent visual stimuli. A short period of rapid finger-tapping (without sensory feedback) caused subjects to underestimate the number of visual stimuli presented near the tapping region; and a period of slow tapping caused overestimation. The distortions occurred both for stimuli presented sequentially (series of flashes) and simultaneously (clouds of dots); both for magnitude estimation and forced-choice comparison. The adaptation was spatially selective, primarily in external, real-world coordinates. Our results sit well with studies reporting links between perception and action, showing that vision and action share mechanisms that encode numbers: a generalized number sense, which estimates the number of self-generated as well as external events.


Anobile, G., Turi, M., Cicchini, G. M. & Burr, D. (2015). Mechanisms for perception of numerosity or texture-density are governed by crowding-like effects,Journal of Vision, 15(5), 1-12. PDF

We have recently provided evidence that the perception of number and texture density is mediated by two independent mechanisms: numerosity mechanisms at relatively low numbers, obeying Weber’s law, and texture-density mechanisms at higher numerosities, following a square root law. In this study we investigated whether the switch between the two mechanisms depends on the capacity to segregate individual dots, and therefore follows similar laws to those governing visual crowding. We measured numerosity discrimination for a wide range of numerosities at three eccentricities. We found that the point where the numerosity regime (Weber’s law) gave way to the density regime (square root law) depended on eccentricity. In central vision, the regime changed at 2.3 dots/82, while at 158 eccentricity, it changed at 0.5 dots/82, three times less dense. As a consequence, thresholds for low numerosities increased with eccentricity, while at higher numerosities thresholds remained constant. We further showed that like crowding, the regime change was independent of dot size, depending on distance between dot centers, not distance between dot edges or ink coverage. Performance was not affected by stimulus contrast or blur, indicating that the transition does not depend on low-level stimulus properties. Our results reinforce the notion that numerosity and texture are mediated by two distinct processes, depending on whether the individual elements are perceptually segregable. Which mechanism is engaged follows laws that determine crowding.

Tinelli, F., Anobile, G., Gori, M., Aagten-Murphy, D., Bartoli, M., Burr, D. C., et al. Time, number and attention in very low birth weight children,Neuropsychologia, 2015 PDF

Abstract Premature birth has been associated with damage in many regions of the cerebral cortex, although there is a particularly strong susceptibility for damage within the parieto-occipital lobes (Volpe, 2009). As these areas have been shown to be critical for both visual attention and magnitudes perception (time, space, and number), it is important to investigate the impact of prematurity on both the magnitude and attentional systems, particularly for children without overt white matter injuries, where the lack of obvious injury may cause their difficulties to remain unnoticed. In this study, we investigated the ability to judge time intervals (visual, audio and audio-visual temporal bisection), discriminate between numerical quantities (numerosity comparison), map numbers onto space (numberline task) and to maintain visuo-spatial attention (multiple-object-tracking) in school-age preterm children (N29). The results show that various parietal functions may be more or less robust to prematurity-related difficulties, with strong impairments found on time estimation and attentional task, while numerical discrimination or mapping tasks remained relatively unimpaired. Thus while our study generally supports the hypothesis of a dorsal stream vulnerability in children born preterm relative to other cortical locations, it further suggests that particular cognitive processes, as highlighted by performance on different tasks, are far more susceptible than others.

Anobile, G., Cicchini, G. M. & Burr, D. C. (2015). Number as a primary perceptual attribute: a review, Perception 1-27 DOI: 10.1177/0301006615602599. PDF

Although humans are the only species to possess language-driven abstract mathematical capacities, we share with many other animals a nonverbal capacity for estimating quantities or numerosity. For some time, researchers have clearly differentiated between small numbers of items—less than about four—referred to as the subitizing  range, and larger numbers, where counting or estimation is required. In this review, we examine more recent evidence suggesting a further division, between sets of items greater than the subitizing range, but sparse enough to be individuated as single items; and densely packed stimuli, where they crowd each other into what is betterconsidered as a texture. These two different regimes are psychophysically discriminable in that they follow distinct psychophysical laws and show different dependencies on eccentricity and on luminance levels. But provided the elements are not too crowded (less than about two items per square degree in central vision, less in the periphery), there is little evidence that estimation of numerosity depends on mechanisms responsive to texture. The distinction is important, as the ability to discriminate numerosity, but not texture, correlates with formal maths skills.


Cicchini, G. M., Anobile, G. & Burr, D. C. (2014). Compressive mapping of number to space reflects dynamic encoding mechanisms, not static logarithmic transform,Proc Natl Acad Sci U S A, 21 (111), 7867-7872. PDF

The mapping of number onto space is fundamental to measurement and mathematics. However, the mapping of young children, unschooled adults, and adults under attentional load shows strong compressive nonlinearities, thought to reflect intrinsic logarithmic encoding mechanisms, which are later "linearized" by education. Here we advance and test an alternative explanation: that the nonlinearity results from adaptive mechanisms incorporating the statistics of recent stimuli. This theory predicts that the response to the current trial should depend on the magnitude of the previous trial, whereas a static logarithmic nonlinearity predicts trialwise independence. We found a strong and highly significant relationship between numberline mapping of the current trial and the magnitude of the previous trial, in both adults and school children, with the current response influenced by up to 15% of the previous trial value. The dependency is sufficient to account for the shape of the numberline, without requiring logarithmic transform. We show that this dynamic strategy results in a reduction of reproduction error, and hence improvement in accuracy.

Anobile, G., Cicchini, G. M. & Burr, D. C. (2014). Separate mechanisms for perception of numerosity and density,Psychol Sci, 1 (25), 265-270. PDF

Despite the existence of much evidence for a number sense in humans, several researchers have questioned whether number is sensed directly or derived indirectly from texture density. Here, we provide clear evidence that numerosity and density judgments are subserved by distinct mechanisms with different psychophysical characteristics. We measured sensitivity for numerosity discrimination over a wide range of numerosities: For low densities (less than 0.25 dots/deg(2)), thresholds increased directly with numerosity, following Weber's law; for higher densities, thresholds increased with the square root of texture density, a steady decrease in the Weber fraction. The existence of two different psychophysical systems is inconsistent with a model in which number is derived indirectly from noisy estimates of density and area; rather, it points to the existence of separate mechanisms for estimating density and number. These results provide strong confirmation for the existence of neural mechanisms that sense number directly, rather than indirectly from texture density.


Anobile, G., Stievano, P. & Burr, D. C. (2013). Visual sustained attention and numerosity sensitivity correlate with math achievement in children,J Exp Child Psychol, 2 (116), 380-391. PDF

In this study, we investigated in school-age children the relationship among mathematical performance, the perception of numerosity (discrimination and mapping to number line), and sustained visual attention. The results (on 68 children between 8 and 11years of age) show that attention and numerosity perception predict math scores but not reading performance. Even after controlling for several variables, including age, gender, nonverbal IQ, and reading accuracy, attention remained correlated with math skills and numerosity discrimination. These findings support previous reports showing the interrelationship between visual attention and both numerosity perception and math performance. It also suggests that attentional deficits may be implicated in disturbances such as developmental dyscalculia.


Anobile, G., Cicchini, G. M. & Burr, D. C. (2012). Linear mapping of numbers onto space requires attention,Cognition, 3 (122), 454-459. PDF

Mapping of number onto space is fundamental to mathematics and measurement. Previous research suggests that while typical adults with mathematical schooling map numbers veridically onto a linear scale, pre-school children and adults without formal mathematics training, as well as individuals with dyscalculia, show strong compressive, logarithmic-like non-linearities when mapping both symbolic and non-symbolic numbers onto the numberline. Here we show that the use of the linear scale is dependent on attentional resources. We asked typical adults to position clouds of dots on a numberline of various lengths. In agreement with previous research, they did so veridically under normal conditions, but when asked to perform a concurrent attentionally-demanding conjunction task, the mapping followed a compressive, non-linear function. We model the non-linearity both by the commonly assumed logarithmic transform, and also with a Bayesian model of central tendency. These results suggest that veridical representation numerosity requires attentional mechanisms.

Anobile, G., Turi, M., Cicchini, G. M. & Burr, D. C. (2012). The effects of cross-sensory attentional demand on subitizing and on mapping number onto space,Vision Res, PDF

Various aspects of numerosity judgments, especially subitizing and the mapping of number onto space, depend strongly on attentional resources. Here we use a dual-task paradigm to investigate the effects of cross-sensory attentional demands on visual subitizing and spatial mapping. The results show that subitizing is strongly dependent on attentional resources, far more so than is estimation of higher numerosities. But unlike many other sensory tasks, visual subitizing is equally affected by concurrent attentionally demanding auditory and tactile tasks as it is by visual tasks, suggesting that subitizing may be amodal. Mapping number onto space was also strongly affected by attention, but only when the dual-task was in the visual modality. The non-linearities in numberline mapping under attentional load are well explained by a Bayesian model of central tendency.


Burr, D. C., Anobile, G. & Turi, M. (2011). Adaptation Affects Both High and Low (Subitized) Numbers Under Conditions of High Attentional Load,Seeing and Perceiving, (24), 141-150. PDF

It has recently been reported that, like most sensory systems, numerosity is subject to adaptation. However, the effect seemed to be limited to numerosity estimation outside the subitizing range. In this study we show that low numbers, clearly in the subitizing range, are adaptable under conditions of high attentional load. These results support the idea that numerosity is detected by a perceptual mechanism that operates over the entire range of numbers, supplemented by an attention-based system for small numbers (subitizing).


Burr, D. C., Turi, M. & Anobile, G. (2010). Subitizing but not estimation of numerosity requires attentional resources,J Vis, 6 (10), 20. PDF

The numerosity of small numbers of objects, up to about four, can be rapidly appraised without error, a phenomenon known as subitizing. Larger numbers can either be counted, accurately but slowly, or estimated, rapidly but with errors. There has been some debate as to whether subitizing uses the same or different mechanisms than those of higher numerical ranges and whether it requires attentional resources. We measure subjects' accuracy and precision in making rapid judgments of numerosity for target numbers spanning the subitizing and estimation ranges while manipulating the attentional load, both with a spatial dual task and the "attentional blink" dual-task paradigm. The results of both attentional manipulations were similar. In the high-load attentional condition, Weber fractions were similar in the subitizing (2-4) and estimation (5-7) ranges (10-15%). In the low-load and single-task condition, Weber fractions substantially improved in the subitizing range, becoming nearly error-free, while the estimation range was relatively unaffected. The results show that the mechanisms operating over the subitizing and estimation ranges are not identical. We suggest that pre-attentive estimation mechanisms works at all ranges, but in the subitizing range, attentive mechanisms also come into play.


  • Anobile G, Turi M, Burr D C, 2010, "Subitizing but not estimation of numerosity requires attentional resources". Perception, 39 ECVP Abstract Supplement, page 80.
  • ...
You are here: People PostDocs Giovanni Anobile