Visual information from observing grasping movement in allocentric and egocentric perspectives: development in typical children, Exp Brain Res.

Development of the motor system lags behind that of the visual system and might delay some visual properties more closely linked to action. We measured the developmental trajectory of the discrimination of object size from observation of the biological motion of a grasping action in egocentric and allocentric viewpoints (observing action of others or self), in children and adolescents from 5 to 18 years of age. Children of 5-7 years of age performed the task at chance, indicating a delayed ability to understand the goal of the action. We found a progressive improvement in the ability of discrimination from 9 to 18 years, which parallels the development of fine motor control. Only after 9 years of age did we observe an advantage for the egocentric view, as previously reported for adults. Given that visual and haptic sensitivity of size discrimination, as well as biological motion, are mature in early adolescence, we interpret our results as reflecting immaturity of the influence of the motor system on visual perception.

A Matched Comparison Across Three Different Sensory Pairs of Cross-Modal Temporal Recalibration From Sustained and Transient Adaptation, i-Perception, 4 (8), 204166951771869.

Pitch contour impairment in congenital amusia: New insights from the Self-paced Audio-visual Contour Task (SACT), Plos One, 6 (12), e0179252.

Pitch discrimination associated with phonological awareness: Evidence from congenital amusia, Scientific Reports, 1 (7).

Psychophysical evidence for the number sense, Philos Trans R Soc Lond B Biol Sci, 1740 (373). 

It is now clear that most animals, including humans, possess an ability to rapidly estimate number. Some have questioned whether this ability arises from dedicated numerosity mechanisms, or is derived indirectly from judgements of density or other attributes. We describe a series of psychophysical experiments, largely using adaptation techniques, which demonstrate clearly the existence of a number sense in humans. The number sense is truly general, extending over space, time and sensory modality, and is closely linked with action. We further show that when multiple cues are present, numerosity emerges as the natural dimension for discrimination. However, when element density increases past a certain level, the elements become too crowded to parse, and the scene is perceived as a texture rather than array of elements. The two different regimes are psychophysically discriminable in that they follow distinct psychophysical laws, and show different dependencies on eccentricity, luminance levels and effects of perceptual grouping. The distinction is important, as the ability to discriminate numerosity, but not texture, correlates with formal maths skills.This article is part of the discussion meeting issue ‘The origins of numerical abilities’.

Spatiotopic coding during dynamic head tilt, J Neurophysiol, 2 (117), 808-817.

Humans maintain a stable representation of the visual world effortlessly, despite constant movements of the eyes, head, and body, across multiple planes. Whereas visual stability in the face of saccadic eye movements has been intensely researched, fewer studies have investigated retinal image transformations induced by head movements, especially in the frontal plane. Unlike head rotations in the horizontal and sagittal planes, tilting the head in the frontal plane is only partially counteracted by torsional eye movements and consequently induces a distortion of the retinal image to which we seem to be completely oblivious. One possible mechanism aiding perceptual stability is an active reconstruction of a spatiotopic map of the visual world, anchored in allocentric coordinates. To explore this possibility, we measured the positional motion aftereffect (PMAE; the apparent change in position after adaptation to motion) with head tilts of approximately 42 degrees between adaptation and test (to dissociate retinal from allocentric coordinates). The aftereffect was shown to have both a retinotopic and spatiotopic component. When tested with unpatterned Gaussian blobs rather than sinusoidal grating stimuli, the retinotopic component was greatly reduced, whereas the spatiotopic component remained. The results suggest that perceptual stability may be maintained at least partially through mechanisms involving spatiotopic coding.

 Active Vision: Dynamic Reformatting of Visual Information by the Saccade-Drift Cycle, Curr Biol, 9 (27), R341-R344.

Visual processing depends on rapid parsing of global features followed by analysis of fine detail. A new study suggests that this transformation is enabled by a cycle of saccades and fixational drifts, which reformat visual input to match the spatiotemporal sensitivity of fast and slow neuronal pathways.

Audio-visual temporal perception in children with restored hearing, Neuropsychologia, (99), 350-359.

It is not clear how audio-visual temporal perception develops in children with restored hearing. In this study we measured temporal discrimination thresholds with an audio-visual temporal bisection task in 9 deaf children with restored audition, and 22 typically hearing children. In typically hearing children, audition was more precise than vision, with no gain in multisensory conditions (as previously reported in Gori et al. (2012b)). However, deaf children with restored audition showed similar thresholds for audio and visual thresholds and some evidence of gain in audio-visual temporal multisensory conditions. Interestingly, we found a strong correlation between auditory weighting of multisensory signals and quality of language: patients who gave more weight to audition had better language skills. Similarly, auditory thresholds for the temporal bisection task were also a good predictor of language skills. This result supports the idea that the temporal auditory processing is associated with language development.

Hemispheric language organization after congenital left brain lesions: A comparison between functional transcranial Doppler and functional MRI, J Neuropsychol.

This study investigated whether functional transcranial Doppler ultrasound (fTCD) is a suitable tool for studying hemispheric lateralization of language in patients with pre-perinatal left hemisphere (LH) lesions and right hemiparesis. Eighteen left-hemisphere-damaged children and young adults and 18 healthy controls were assessed by fTCD and fMRI to evaluate hemispheric activation during two language tasks: a fTCD animation description task and a fMRI covert rhyme generation task. Lateralization indices (LIs), measured by the two methods, differed significantly between the two groups, for a clear LH dominance in healthy participants and a prevalent activation of right hemisphere in more than 80% of brain-damaged patients. Distribution of participants in terms of left, right, and bilateral lateralization was highly concordant between fTCD and fMRI values. Moreover, right hemisphere language dominance in patients with left hemispheric lesions was significantly associated with severity of cortical and subcortical damage in LH. This study suggests that fTCD is an easily applicable tool that might be a valid alternative to fMRI for large-scale studies of patients with congenital brain lesions.

The light-from-above prior is intact in autistic children, J Exp Child Psychol, (161), 113-125.

Sensory information is inherently ambiguous. The brain disambiguates this information by anticipating or predicting the sensory environment based on prior knowledge. Pellicano and Burr (2012) proposed that this process may be atypical in autism and that internal assumptions, or “priors,” may be underweighted or less used than in typical individuals. A robust internal assumption used by adults is the “light-from-above” prior, a bias to interpret ambiguous shading patterns as if formed by a light source located above (and slightly to the left) of the scene. We investigated whether autistic children (n=18) use this prior to the same degree as typical children of similar age and intellectual ability (n=18). Children were asked to judge the shape (concave or convex) of a shaded hexagon stimulus presented in 24 rotations. We estimated the relation between the proportion of convex judgments and stimulus orientation for each child and calculated the light source location most consistent with those judgments. Children behaved similarly to adults in this task, preferring to assume that the light source was from above left, when other interpretations were compatible with the shading evidence. Autistic and typical children used prior assumptions to the same extent to make sense of shading patterns. Future research should examine whether this prior is as adaptable (i.e., modifiable with training) in autistic children as it is in typical adults.