2020

Cecilia Steinwurzel; Silvia Animali; Guido Marco Cicchini; Maria Concetta Morrone; Paola Binda

Using psychophysical performance to predict short-term Ocular Dominance plasticity in human adults

Journal of Vision July 2020, Vol.20, 6.

https://doi.org/10.1167/jov.20.7.6 Download

Binocular rivalry has become an important index of visual performance, both to measure ocular dominance or its plasticity, and to index bistable perception. We investigated its interindividual variability across 50 normal adults and found that the duration of dominance phases in rivalry is linked with the duration of dominance phases in another bistable phenomenon (structure from motion). Surprisingly, it also correlates with the strength of center–surround interactions (indexed by the tilt illusion), suggesting a common mechanism supporting both competitive interactions: center–surround and rivalry. In a subset of 34 participants, we further investigated the variability of short-term ocular dominance plasticity, measured with binocular rivalry before and after 2 hours of monocular deprivation. We found that ocular dominance shifts in favor of the deprived eye and that a large portion of ocular dominance variability after deprivation can be predicted from the dynamics of binocular rivalry before deprivation. The single best predictor is the proportion of mixed percepts (phases without dominance of either eye) before deprivation, which is positively related to ocular dominance unbalance after deprivation. Another predictor is the duration of dominance phases, which interacts with mixed percepts to explain nearly 50% of variance in ocular dominance unbalance after deprivation. A similar predictive power is achieved by substituting binocular rivalry dominance phase durations with tilt illusion magnitude, or structure from motion phase durations. Thus, we speculate that ocular dominance plasticity is modulated by two types of signals, estimated from psychophysical performance before deprivation, namely, interocular inhibition (promoting binocular fusion, hence mixed percepts) and inhibition for perceptual competition (promoting longer dominance phases and stronger center–surround interactions).