Contour interactions between pairs of Gabors engaged in binocular rivalry reveal a map of the association field,Vision Res, 8-9 (46), 1473-1487.

A psychophysical study was conducted to investigate contour interactions (the ‘association field’). Two Gabor patches were presented to one eye, with random-dot patches in corresponding locations of the other eye so as to produce binocular rivalry. Perceptual alternations of the two rivalry processes were monitored continuously by observers and the two time series were cross-correlated. The Gabors were oriented collinearly, obliquely, or orthogonally, and spatial separation was varied. A parallel condition was also included. Correlation between the rivalry processes strongly depended on separation and relative orientation. Correlations between adjacent collinear Gabors was near-perfect and reduced with spatial separation and as relative orientation departed from collinear. Importantly, variations in cross-correlation did not alter the rivalry processes (average dominance duration, and therefore alternation rate, was constant across conditions). Instead, synchronisation of rivalry oscillations accounts for the correlation variations: rivalry alternations were highly synchronised when contour interactions were strong and were poorly synchronised when contour interactions were weak. The level of synchrony between these two stochastic processes, in depending on separation and relative orientation, effectively reveals a map of the association field. These association fields are not greatly affected by contrast, and can be demonstrated between contours that are presented to separate hemispheres.

Perceptual synchrony of audiovisual streams for natural and artificial motion sequences,J Vis, 3 (6), 260-268.

We investigated the conditions necessary for perceptual simultaneity of visual and auditory stimuli under natural conditions: video sequences of conga drumming at various rhythms. Under most conditions, the auditory stream needs to be delayed for sight and sound to be perceived simultaneously. The size of delay for maximum perceived simultaneity varied inversely with drumming tempo, from about 100 ms at 1 Hz to 30 ms at 4 Hz. Random drumming motion produced similar results, with higher random tempos requiring less delay. Video sequences of disk stimuli moving along a motion profile matched to the drummer produced near-identical results. When the disks oscillated at constant speed rather than following “biological” speed variations, the delays necessary for perceptual synchrony were systematically less. The results are discussed in terms of real-world constraints for perceptual synchrony and possible neural mechanisms.