A visual sense of number,Curr Biol, 6 (18), 425-428.

Evidence exists for a nonverbal capacity for the apprehension of number, in humans [1] (including infants [2, 3]) and in other primates [4-6]. Here, we show that perceived numerosity is susceptible to adaptation, like primary visual properties of a scene, such as color, contrast, size, and speed. Apparent numerosity was decreased by adaptation to large numbers of dots and increased by adaptation to small numbers, the effect depending entirely on the numerosity of the adaptor, not on contrast, size, orientation, or pixel density, and occurring with very low adaptor contrasts. We suggest that the visual system has the capacity to estimate numerosity and that it is an independent primary visual property, not reducible to others like spatial frequency or density of texture [7].

The knowing visual self,Trends Cogn Sci, 10 (12), 363-364.

Like all information-processing systems, biological visual systems are limited by internal and external noise; but this noise never actually impinges on our conscious perception. An article recently published in the Journal of Vision suggests that, at least for orientation judgments, the visual system has access to its own noisiness and sets thresholds accordingly. This could well be a general principle in perception, with important and wide ranging consequences.

Young children do not integrate visual and haptic form information,Curr Biol, 9 (18), 694-698.

Several studies have shown that adults integrate visual and haptic information (and information from other modalities) in a statistically optimal fashion, weighting each sense according to its reliability [1, 2]. When does this capacity for crossmodal integration develop? Here, we show that prior to 8 years of age, integration of visual and haptic spatial information is far from optimal, with either vision or touch dominating totally, even in conditions in which the dominant sense is far less precise than the other (assessed by discrimination thresholds). For size discrimination, haptic information dominates in determining both perceived size and discrimination thresholds, whereas for orientation discrimination, vision dominates. By 8-10 years, the integration becomes statistically optimal, like adults. We suggest that during development, perceptual systems require constant recalibration, for which cross-sensory comparison is important. Using one sense to calibrate the other precludes useful combination of the two sources.