BOLD response to spatial phase congruency in human brain,J Vis, 10 (8), 15 11-15.

Human psychophysical observations, computational models, and the selectivity of neurons in primary visual cortex all suggest that an early step in visual processing is the detection of features such as lines and edges. However, previous fMRI experiments investigating the responses of early visual areas to phase coherence have led to apparently discordant results. We studied the human brain BOLD responses to structured periodic band-pass images of matched amplitude spectrum but of different phase spectra, arranged to create three distinct types of stimuli: pure edges; pure lines (matched global and local energy to the edges, but different phase); and random noise (random phase spectrum, hence no salient features, and a different spatial distribution of local energy from the lines and edges stimuli). Alternation of lines against edges did not activate primary visual cortex, but did activate two higher order visual areas. Alternation of these lines or edges against the random stimulus produced a strong activity in many visual areas, including primary visual cortex. Interestingly, the BOLD activity was higher for the edges and lines than for the random stimuli for a wide range of stimulus contrasts, indicating the presence of non-linear gain modulation in the cell response. These results show that phase congruency is coded at the level of primary visual cortex. We show that a stage of response gain modulation can explain our present and previous fMRI discordant results.

Inversion of perceived direction of motion caused by spatial undersampling in two children with periventricular leukomalacia,J Cogn Neurosci, 6 (20), 1094-1106. 

We report here two cases of two young diplegic patients with cystic periventricular leukomalacia who systematically, and with high sensitivity, perceive translational motion of a random-dot display in the opposite direction. The apparent inversion was specific for translation motion: Rotation and expansion motion were perceived correctly, with normal sensitivity. It was also specific for random-dot patterns, not occurring with gratings. For the one patient that we were able to test extensively, contrast sensitivity for static stimuli was normal, but was very low for direction discrimination at high spatial frequencies and all temporal frequencies. His optokinetic nystagmus movements were normal but he was unable to track a single translating target, indicating a perceptual origin of the tracking deficit. The severe deficit for motion perception was also evident in the seminatural situation of a driving simulation video game. The perceptual deficit for translational motion was reinforced by functional magnetic resonance imaging studies. Translational motion elicited no response in the MT complex, although it did produce a strong response in many visual areas when contrasted with blank stimuli. However, radial and rotational motion produced a normal pattern of activation in a subregion of the MT complex. These data reinforce the existent evidence for independent cortical processing for translational, and circular or radial flow motion, and further suggest that the two systems have different vulnerability and plasticity to prenatal damage. They also highlight the complexity of visual motion perception, and how the delicate balance of neural activity can lead to paradoxical effects such as consistent misperception of the direction of motion. We advance a possible explanation of a reduced spatial sampling of the motion stimuli and report a simple model that simulates well the experimental results.