Underestimation of perceived number at the time of saccades,Vision Res, 1 (51), 34-42. 

Saccadic eye movements produce transient distortions in both space and time. Mounting evidence suggests that space and time perception are linked, and associated with the perception of another important perceptual attribute, numerosity. Here we investigate the effect of saccades on the perceived numerosity of briefly presented arrays of visual elements. We report a systematic underestimation of numerosity for stimuli flashed just before or during saccades, of about 35% of the reference numerosity. The bias is observed only for relatively large arrays of visual elements, in line with the notion that a distinct perceptual mechanism is involved with enumeration of small numerosities in the ‘subitizing’ range. This study provides further evidence for the notion that space, time and number share common neural representations, all affected by saccades.

Spatiotemporal profile of peri-saccadic contrast sensitivity,J Vis, 14 (11).

Sensitivity to luminance contrast is reduced just before and during saccades (saccadic suppression), whereas sensitivity to color contrast is unimpaired peri-saccadically and enhanced post-saccadically. The exact spatiotemporal map of these perceptual effects is as yet unknown. Here, we measured detection thresholds for briefly flashed Gaussian blobs modulated in either luminance or chromatic contrast, displayed at a range of eccentricities. Sensitivity to luminance contrast was reduced peri-saccadically by a scaling factor, which was almost constant across retinal space. Saccadic suppression followed a similar time course across all tested eccentricities and was maximal shortly after the saccade onset. Sensitivity to chromatic contrast was enhanced post-saccadically at all tested locations. The enhancement was not specifically linked to the execution of saccades, as it was also observed following a displacement of retinal images comparable to that caused by a saccade. We conclude that luminance and chromatic contrast sensitivities are subject to distinct modulations at the time of saccades, resulting from independent neural processes.