A comparative study of face processing using scrambled faces,Perception, 4 (41), 460-473.

It is a widespread assumption that all primate species process faces in the same way because the species are closely related and they engage in similar social interactions. However, this approach ignores potentially interesting and informative differences that may exist between species. This paper describes a comparative study of holistic face processing. Twelve subjects (six chimpanzees Pan troglodytes and six rhesus monkeys Macaca mulatta) were trained to discriminate whole faces (faces with features in their canonical position) and feature-scrambled faces in two separate conditions. We found that both species tended to match the global configuration of features over local features, providing strong evidence of global precedence. In addition, we show that both species were better able to generalize from a learned configuration to an entirely novel configuration when they were first trained to match feature-scrambled faces compared to when they were trained with whole faces. This result implies that the subjects were able to access local information easier when facial features were presented in a scrambled configuration and is consistent with a holistic processing hypothesis. Interestingly, these data also suggest that, while holistic processing in chimpanzees is tuned to own-species faces, monkeys have a more general approach towards all faces. Thus, while these data confirm that both chimpanzees and rhesus monkeys process faces holistically, they also indicate that there are differences between the species that warrant further investigation.

The development of speed discrimination abilities,Vision Res, (70), 27-33.

The processing of speed is a critical part of a child’s visual development, allowing children to track and interact with moving objects. Despite such importance, no study has investigated the developmental trajectory of speed discrimination abilities or precisely when these abilities become adult-like. Here, we measured speed discrimination thresholds in 5-, 7-, 9-, 11-year-olds and adults using random dot stimuli with two different reference speeds (slow: 1.5 deg/s; fast: 6 deg/s). Sensitivity for both reference speeds improved exponentially with age and, at all ages, participants were more sensitive to the faster reference speed. However, sensitivity to slow speeds followed a more protracted developmental trajectory than that for faster speeds. Furthermore, sensitivity to the faster reference speed reached adult-like levels by 11 years, whereas sensitivity to the slower reference speed was not yet adult-like by this age. Different developmental trajectories may reflect distinct systems for processing fast and slow speeds. The reasonably late development of speed processing abilities may be due to inherent limits in the integration of neuronal responses in motion-sensitive areas in early childhood.