Linear mapping of numbers onto space requires attention,Cognition, 3 (122), 454-459.
Mapping of number onto space is fundamental to mathematics and measurement. Previous research suggests that while typical adults with mathematical schooling map numbers veridically onto a linear scale, pre-school children and adults without formal mathematics training, as well as individuals with dyscalculia, show strong compressive, logarithmic-like non-linearities when mapping both symbolic and non-symbolic numbers onto the numberline. Here we show that the use of the linear scale is dependent on attentional resources. We asked typical adults to position clouds of dots on a numberline of various lengths. In agreement with previous research, they did so veridically under normal conditions, but when asked to perform a concurrent attentionally-demanding conjunction task, the mapping followed a compressive, non-linear function. We model the non-linearity both by the commonly assumed logarithmic transform, and also with a Bayesian model of central tendency. These results suggest that veridical representation numerosity requires attentional mechanisms.