Saccadic compression of symbolic numerical magnitude,PLoS One, 11 (7), e49587.

Stimuli flashed briefly around the time of saccadic eye movements are subject to complex distortions: compression of space and time; underestimate of numerosity. Here we show that saccadic distortions extend to abstract quantities, affecting the representation of symbolic numerical magnitude. Subjects consistently underestimated the results of rapidly computed mental additions and subtractions, when the operands were briefly displayed before a saccade. However, the recognition of the number symbols was unimpaired. These results are consistent with the hypothesis of a common, abstract metric encoding magnitude along multiple dimensions. They suggest that a surprising link exists between the preparation of action and the representation of abstract quantities.

“Non-retinotopic processing” in Ternus motion displays modeled by spatiotemporal filters,J Vis, 1 (12),

Recently, M. Boi, H. Ogmen, J. Krummenacher, T. U. Otto, & M. H. Herzog (2009) reported a fascinating visual effect, where the direction of apparent motion was disambiguated by cues along the path of apparent motion, the Ternus-Pikler group motion, even though no actual movement occurs in this stimulus. They referred to their study as a “litmus test” to distinguish “non-retinotopic” (motion-based) from “retinotopic” (retina-based) image processing. We adapted the test to one with simple grating stimuli that could be more readily modeled and replicated their psychophysical results quantitatively with this stimulus. We then modeled our experiments in 3D (x, y, t) Fourier space and demonstrated that the observed perceptual effects are readily accounted for by integration of information within a detector that is oriented in space and time, in a similar way to previous explanations of other motion illusions. This demonstration brings the study of Boi et al. into the more general context of perception of moving objects.

Blindsight in children with congenital and acquired cerebral lesions, Cortex (published online 10 August 2012)

It has been shown that unconscious visual function can survive lesions to optical radiations and/or primary visual cortex (V1), a phenomenon termed “blindsight”. Studies on animal models (cat and monkey) show that the age when the lesion occurs determines the extent of residual visual capacities. Much less is known about the functional and underlying neuronal repercussions of early cortical damage in humans. We measured sensitivity to several visual tasks in four children with congenital unilateral brain lesions that severely affected optic radiations, and in another group of three children with similar lesions, acquired in childhood. In two of the congenital patients, we measured blood oxygenation level dependent (BOLD) activity in response to stimulation of each visual field quadrants. Results show clear evidence of residual unconscious processing of position, orientation and motion of visual stimuli displayed in the scotoma of congenitally lesioned children, but not in the children with acquired lesions. The calcarine cortical BOLD responses were abnormally elicited by stimulation of the ipsilateral visual field and in the scotoma region, demonstrating a profound neuronal reorganization. In conclusion, our data suggest that congenital lesions can trigger massive reorganization of the visual system to alleviate functional effects of early brain insults.

Spatiotemporal dynamics of perisaccadic remapping in humans revealed by classification images,J Vis, 4 (12), 11.

We actively scan our environment with fast ballistic movements called saccades, which create large and rapid displacements of the image on the retina. At the time of saccades, vision becomes transiently distorted in many ways: Briefly flashed stimuli are displaced in space and in time, and spatial and temporal intervals appear compressed. Here we apply the psychophysical technique of classification images to study the spatiotemporal dynamics of visual mechanisms during saccades. We show that saccades cause gross distortions of the classification images. Before the onset of saccadic eye movements, the positive lobes of the images become enlarged in both space and in time and also shifted in a systematic manner toward the pre-saccadic fixation (in space) and anticipated in time by about 50 ms. The transient reorganization creates a spatiotemporal organization oriented in the direction of saccadic-induced motion at the time of saccades, providing a potential mechanism for integrating stimuli across saccades, facilitating stable and continuous vision in the face of constant eye movements.

Visual motion distorts visual and motor space, J Vis, 2 (12),

Mapping of number onto space is fundamental to mathematics and measurement. Previous research suggests that while typical adults with mathematical schooling map numbers veridically onto a linear scale, pre-school children and adults without formal mathematics training, as well as individuals with dyscalculia, show strong compressive, logarithmic-like non-linearities when mapping both symbolic and non-symbolic numbers onto the numberline. Here we show that the use of the linear scale is dependent on attentional resources. We asked typical adults to position clouds of dots on a numberline of various lengths. In agreement with previous research, they did so veridically under normal conditions, but when asked to perform a concurrent attentionally-demanding conjunction task, the mapping followed a compressive, non-linear function. We model the non-linearity both by the commonly assumed logarithmic transform, and also with a Bayesian model of central tendency. These results suggest that veridical representation numerosity requires attentional mechanisms.

Active movement restores veridical event-timing after tactile adaptation,J Neurophysiol, 8 (108), 2092-2100.

Growing evidence suggests that time in the subsecond range is tightly linked to sensory processing. Event-time can be distorted by sensory adaptation, and many temporal illusions can accompany action execution. In this study, we show that adaptation to tactile motion causes a strong contraction of the apparent duration of tactile stimuli. However, when subjects make a voluntary motor act before judging the duration, it annuls the adaptation-induced temporal distortion, reestablishing veridical event-time. The movement needs to be performed actively by the subject: passive movement of similar magnitude and dynamics has no effect on adaptation, showing that it is the motor commands themselves, rather than reafferent signals from body movement, which reset the adaptation for tactile duration. No other concomitant perceptual changes were reported (such as apparent speed or enhanced temporal discrimination), ruling out a generalized effect of body movement on somatosensory processing. We suggest that active movement resets timing mechanisms in preparation for the new scenario that the movement will cause, eliminating inappropriate biases in perceived time. Our brain seems to utilize the intention-to-move signals to retune its perceptual machinery appropriately, to prepare to extract new temporal information.

Plasticità ed adattabilità della visione,Giornale Italiano di Psicologia, (3), 517-522.

Constructing stable spatial maps of the world,Perception, 11 (41), 1355-1372.

To interact rapidly and effectively with our environment, our brain needs access to a neural representation—or map—of the spatial layout of the external world. However, the construction of such a map poses major challenges to the visual system, given that the images on our retinae depend on where the eyes are looking, and shift each time we move our eyes, head, and body to explore the world. Much research has been devoted to how the stability is achieved, with the debate often polarized between the utility of spatiotopic maps (that remain solid in external coordinates), as opposed to transiently updated retinotopic maps. Our research suggests that the visual system uses both strategies to maintain stability. f MRI, motion-adaptation, and saccade-adaptation studies demonstrate and characterize spatiotopic neural maps within the dorsal visual stream that remain solid in external rather than retinal coordinates. However, the construction of these maps takes time (up to 500 ms) and attentional resources. To solve the immediate problems created by individual saccades, we postulate the existence of a separate system to bridge each saccade with neural units that are ‘transiently craniotopic’. These units prepare for the effects of saccades with a shift of their receptive fields before the saccade starts, then relaxing back into their standard position during the saccade, compensating for its action. Psychophysical studies investigating localization of stimuli flashed briefly around the time of saccades provide strong support for these neural mechanisms, and show quantitatively how they integrate information across saccades. This transient system cooperates with the spatiotopic mechanism to provide a useful map to guide interactions with our environment: one rapid and transitory, bringing into play the high-resolution visual areas; the other slow, long-lasting, and low-resolution, useful for interacting with the world.