Predictive coding of multisensory timing, Current Opinion in Behavioral Sciences, (8), 200-206.

The sense of time is foundational for perception and action, yet it frequently departs significantly from physical time. In the paper we review recent progress on temporal contextual effects, multisensory temporal integration, temporal recalibration, and related computational models. We suggest that subjective time arises from minimizing prediction errors and adaptive recalibration, which can be unified in the framework of predictive coding, a framework rooted in Helmholtz’s ‘perception as inference’.

No rapid audiovisual recalibration in adults on the autism spectrum, Scientific Reports, (6), 21756.

Autism spectrum disorders (ASD) are characterized by difficulties in social cognition, but are also associated with atypicalities in sensory and perceptual processing. Several groups have reported that autistic individuals show reduced integration of socially relevant audiovisual signals, which may contribute to the higher-order social and cognitive difficulties observed in autism. Here we use a newly devised technique to study instantaneous adaptation to audiovisual asynchrony in autism. Autistic and typical participants were presented with sequences of brief visual and auditory stimuli, varying in asynchrony over a wide range, from 512?ms auditory-lead to 512?ms auditory-lag, and judged whether they seemed to be synchronous. Typical adults showed strong adaptation effects, with trials proceeded by an auditory-lead needing more auditory-lead to seem simultaneous, and vice versa. However, autistic observers showed little or no adaptation, although their simultaneity curves were as narrow as the typical adults. This result supports recent Bayesian models that predict reduced adaptation effects in autism. As rapid audiovisual recalibration may be fundamental for the optimisation of speech comprehension, recalibration problems could render language processing more difficult in autistic individuals, hindering social communication.

Adaptation-Induced Compression of Event Time Occurs Only for Translational Motion, Scientific Reports, (6), 23341.

Adaptation to fast motion reduces the perceived duration of stimuli displayed at the same location as the adapting stimuli. Here we show that the adaptation-induced compression of time is specific for translational motion. Adaptation to complex motion, either circular or radial, did not affect perceived duration of subsequently viewed stimuli. Adaptation with multiple patches of translating motion caused compression of duration only when the motion of all patches was in the same direction. These results show that adaptation-induced compression of event-time occurs only for uni-directional translational motion, ruling out the possibility that the neural mechanisms of the adaptation occur at early levels of visual processing.

Adaptation to size affects saccades with long but not short latencies, J Vis, 7 (16), 2.

Maintained exposure to a specific stimulus property-such as size, color, or motion-induces perceptual adaptation aftereffects, usually in the opposite direction to that of the adaptor. Here we studied how adaptation to size affects perceived position and visually guided action (saccadic eye movements) to that position. Subjects saccaded to the border of a diamond-shaped object after adaptation to a smaller diamond shape. For saccades in the normal latency range, amplitudes decreased, consistent with saccading to a larger object. Short-latency saccades, however, tended to be affected less by the adaptation, suggesting that they were only partly triggered by a signal representing the illusory target position. We also tested size perception after adaptation, followed by a mask stimulus at the probe location after various delays. Similar size adaptation magnitudes were found for all probe-mask delays. In agreement with earlier studies, these results suggest that the duration of the saccade latency period determines the reference frame that codes the probe location.

Early visual deprivation severely compromises the auditory sense of space in congenitally blind children, Dev Psychol, 6 (52), 847-853.

A recent study has shown that congenitally blind adults, who have never had visual experience, are impaired on an auditory spatial bisection task (Gori, Sandini, Martinoli, & Burr, 2014). In this study we investigated how thresholds for auditory spatial bisection and auditory discrimination develop with age in sighted and congenitally blind children (9 to 14 years old). Children performed 2 spatial tasks (minimum audible angle and space bisection) and 1 temporal task (temporal bisection). There was no impairment in the temporal task for blind children but, like adults, they showed severely compromised thresholds for spatial bisection. Interestingly, the blind children also showed lower precision in judging minimum audible angle. These results confirm the adult study and go on to suggest that even simpler auditory spatial tasks are compromised in children, and that this capacity recovers over time.

A shared numerical representation for action and perception, Elife, (5).

Humans and other species have perceptual mechanisms dedicated to estimating approximate quantity: a sense of number. Here we show a clear interaction between self-produced actions and the perceived numerosity of subsequent visual stimuli. A short period of rapid finger-tapping (without sensory feedback) caused subjects to underestimate the number of visual stimuli presented near the tapping region; and a period of slow tapping caused overestimation. The distortions occurred both for stimuli presented sequentially (series of flashes) and simultaneously (clouds of dots); both for magnitude estimation and forced-choice comparison. The adaptation was spatially selective, primarily in external, real-world coordinates. Our results sit well with studies reporting links between perception and action, showing that vision and action share mechanisms that encode numbers: a generalized number sense, which estimates the number of self-generated as well as external events.

Adaptation to numerosity requires only brief exposures, and is determined by number of events, not exposure duration, J Vis, 10 (16), 22.

Exposure to a patch of dots produces a repulsive shift in the perceived numerosity of subsequently viewed dot patches. Although a remarkably strong effect, in which the perceived numerosity can be shifted by up to 50% of the actual numerosity, very little is known about the temporal dynamics. Here we demonstrate a novel adaptation paradigm that allows numerosity adaptation to be rapidly induced at several distinct locations simultaneously. We show that not only is this adaptation to numerosity spatially specific, with different locations of the visual field able to be adapted to high, low, or neutral stimuli, but it can occur with only very brief periods of adaptation. Further investigation revealed that the adaptation effect was primarily driven by the number of unique adapting events that had occurred and not by either the duration of each event or the total duration of exposure to adapting stimuli. This event-based numerosity adaptation appears to fit well with statistical models of adaptation in which the dynamic adjustment of perceptual experiences, based on both the previous experience of the stimuli and the current percept, acts to optimize the limited working range of perception. These results implicate a highly plastic mechanism for numerosity perception, which is dependent on the number of discrete adaptation events, and also demonstrate a quick and efficient paradigm suitable for examining the temporal properties of adaptation.

Numerosity but not texture-density discrimination correlates with math ability in children, Dev Psychol, 8 (52), 1206-1216.

Considerable recent work suggests that mathematical abilities in children correlate with the ability to estimate numerosity. Does math correlate only with numerosity estimation, or also with other similar tasks? We measured discrimination thresholds of school-age (6- to 12.5-years-old) children in 3 tasks: numerosity of patterns of relatively sparse, segregatable items (24 dots); numerosity of very dense textured patterns (250 dots); and discrimination of direction of motion. Thresholds in all tasks improved with age, but at different rates, implying the action of different mechanisms: In particular, in young children, thresholds were lower for sparse than textured patterns (the opposite of adults), suggesting earlier maturation of numerosity mechanisms. Importantly, numerosity thresholds for sparse stimuli correlated strongly with math skills, even after controlling for the influence of age, gender and nonverbal IQ. However, neither motion-direction discrimination nor numerosity discrimination of texture patterns showed a significant correlation with math abilities. These results provide further evidence that numerosity and texture-density are perceived by independent neural mechanisms, which develop at different rates; and importantly, only numerosity mechanisms are related to math. As developmental dyscalculia is characterized by a profound deficit in discriminating numerosity, it is fundamental to understand the mechanism behind the discrimination.

Different coding strategies for the perception of stable and changeable facial attributes, Sci. Rep., 6.

Perceptual systems face competing requirements: improving signal-to-noise ratios of noisy images, by integration; and maximising sensitivity to change, by differentiation. Both processes occur in human vision, under different circumstances: they have been termed priming, or serial dependencies, leading to positive sequential effects; and adaptation or habituation, which leads to negative sequential effects. We reasoned that for stable attributes, such as the identity and gender of faces, the system should integrate: while for changeable attributes like facial expression, it should also engage contrast mechanisms to maximise sensitivity to change. Subjects viewed a sequence of images varying simultaneously in gender and expression, and scored each as male or female, and happy or sad. We found strong and consistent positive serial dependencies for gender, and negative dependency for expression, showing that both processes can operate at the same time, on the same stimuli, depending on the attribute being judged. The results point to highly sophisticated mechanisms for optimizing use of past information, either by integration or differentiation, depending on the permanence of that attribute.

Effects of adaptation on numerosity decoding in the human brain, Neuroimage, (143), 364-377. 

Psychophysical studies have shown that numerosity is a sensory attribute susceptible to adaptation. Neuroimaging studies have reported that, at least for relatively low numbers, numerosity can be accurately discriminated in the intra-parietal sulcus. Here we developed a novel rapid adaptation paradigm where adapting and test stimuli are separated by pauses sufficient to dissociate their BOLD activity. We used multivariate pattern recognition to classify brain activity evoked by non-symbolic numbers over a wide range (20-80), both before and after psychophysical adaptation to the highest numerosity. Adaptation caused underestimation of all lower numerosities, and decreased slightly the average BOLD responses in V1 and IPS. Using support vector machine, we showed that the BOLD response of IPS, but not in V1, classified numerosity well, both when tested before and after adaptation. However, there was no transfer from training pre-adaptation responses to testing post-adaptation, and vice versa, indicating that adaptation changes the neuronal representation of the numerosity. Interestingly, decoding was more accurate after adaptation, and the amount of improvement correlated with the amount of perceptual underestimation of numerosity across subjects. These results suggest that numerosity adaptation acts directly on IPS, rather than indirectly via other low-level stimulus parameters analysis, and that adaptation improves the capacity to discriminate numerosity.