Visual sensitivity and bias oscillate phase-locked to saccadic eye movements, Journal of Vision, 14 (19), 15.

Oscillations in perceptual performance have been observed before and after a voluntary action, like hand, finger, and eye movements. In particular, discrimination accuracy of suprathreshold contrast stimuli oscillates in the delta range (2–3 Hz) phase-locked to saccadic eye movements. Importantly, saccadic suppression is embedded in phase with these long-lasting perceptual oscillations. It is debated whether these rhythmic modulations affect only appearance of high-contrast stimuli or whether absolute detection threshold is also modulated rhythmically. Here we measured location discrimination of a brief Gabor patch presented randomly between 1 s before and after a voluntary saccade and demonstrated that absolute contrast thresholds oscillated at a similar frequency to suprathreshold contrast discrimination. Importantly, saccadic suppression is also embedded in phase with absolute threshold oscillations. Interestingly, response bias was also found to oscillate at the same frequency in both tasks. However, the frequency was in the alpha range for bias, while it was in the delta range for sensitivity. These results demonstrate the presence of perisaccadic delta oscillations in visual sensitivity phase-locked to saccadic onset, and independent from response bias alpha oscillations. Overall, the present findings reinforce the suggestion of a leading role of oscillations in the temporal binding between eye-movement and visual processing timing.

Behavioural oscillations in visual orientation discrimination reveal distinct modulation rates for both sensitivity and response bias, Sci Rep, 1 (9), 1115.

Perception is modulated by ongoing brain oscillations. Psychophysical studies show a voluntary action can synchronize oscillations, producing rhythmical fluctuations of visual contrast sensitivity. We used signal detection to examine whether voluntary action could also synchronize oscillations in decision criterion, and whether that was due to the oscillations of perceptual bias or of motor bias. Trials started with a voluntary button-press. After variable time lags, a grating at threshold contrast was presented briefly and participants discriminated its orientation (45 degrees or -45 degrees ) with a mouse-click. Two groups of participants completed the experiment with opposite mappings between grating orientations and response buttons. We calculated sensitivity and criterion in the 800 ms period following the button press. To test for oscillations, we fitted first-order Fourier series to these time series. Alpha oscillations occurred in both sensitivity and criterion at different frequencies: ~8 Hz (sensitivity) and ~10 Hz (criterion). Sensitivity oscillations had the same phase for both stimulus-response mappings. Criterion oscillations, however, showed a strong anti-phase relationship when the two groups were compared, suggesting a motor bias rather than perceptual bias. Our findings suggest two roles for alpha oscillations: in sensitivity, reflecting rhythmic attentional inhibition, and in criterion, indicating dynamic motor-related anticipation or preparation.

Time dilation effect in an active observer and virtual environment requires apparent motion: No dilation for retinal- or world-motion alone. Journal of Vision, 19(3), 4.

It is known that moving visual stimuli are perceived to last longer than stationary stimuli with the same physical duration (Kanai, Paffen, Hogendoorn, & Verstraten, 2006), and that motor actions (Tomassini & Morrone, 2016) and eye movements (Morrone, Ross, & Burr, 2005) can alter perceived duration. In the present work, we investigated the contributions of stimulus motion and self-motion to perceived duration while observers stood or walked in a virtual reality environment. Using a visual temporal reproduction task, we independently manipulated both the participants’ motion (stationary or walking) and the stimulus motion (retinal stationary, real-world stationary and negative double velocity). When the observers were standing still, drifting gratings were perceived as lasting longer than duration-matched static gratings. Interestingly, we did not see any time distortion when observers were walking, neither when the gratings were kept stationary relative to the observer’s point of view (i.e., no retinal motion) nor when they were stationary in the external world (i.e., producing the same retinal velocity as the walking condition with stationary grating). Self-motion caused significant dilation in perceived duration only when the gratings were moving at double speed, opposite to the observers’ walking direction. Consistent with previous work (Fornaciai, Arrighi, & Burr, 2016), this suggests that the system is able to suppress self-generated motion to enhance external motion, which would have ecological benefits, for example, for threat detection while navigating through the environment.

Residual Visual Responses in Patients With Retinitis Pigmentosa Revealed by Functional Magnetic Resonance Imaging, Translational Vision Science & Technology, 6 (8), 44.

Purpose: We evaluated the potential of magnetic resonance imaging in identifying signs of cortical visual processing with greater sensitivity than standard ophthalmological measures in patients with retinitis pigmentosa (RP) at advanced stages.

Methods: Eight patients affected with RP with only bare light perception and weak or absent visual evoked potential (VEP) or electroretinogram (ERG) responses to flashes of light were tested. Visual impairment was evaluated by means of psychophysical testing, where patients were asked to discriminate the drifting direction of a contrast modulated grating. Patients underwent magnetic resonance imaging scanning, and the behavioral performance was correlated with both blood oxygenation level-dependent (BOLD) signal elicited by flashes of lights and cortical thickness measured in primary visual area.

Results: Contrast sensitivity to drifting gratings of very low spatial and temporal frequency was greatly impaired, yet measurable in all patients. Weak luminance flashes elicited significant BOLD responses in the striate and extrastriate cortex, despite that the stimuli were not perceived during scanning. Importantly, patients with less severe impairment of contrast sensitivity showed stronger V1 BOLD responses. Striate cortical thickness did not correlate with visual sensitivity.

Conclusions: BOLD responses provide a sensitive and reliable index of visual sparing more than VEPs or ERGs, which are often absent in RP patients. The minimal residual vision can be assessed by optimal visual stimulation in two alternative forced choice discrimination tasks and by BOLD responses. Imaging techniques provide useful information to monitor progressive vision loss.

Translational Relevance: Functional magnetic resonance imaging might be a practical tool for assessing visual sparing, as it is more feasible and sensitive than psychophysical or ophthalmological testing.