Excessive visual crowding effects in developmental dyscalculia

Visual crowding refers to the inability to identify objects when surrounded by other similar items. Crowding-like mechanisms are thought to play a key role in numerical perception by determining the sensory mechanisms through which ensembles are perceived. Enhanced visual crowding might hence prevent the normal development of a system involved in segregating and perceiving discrete numbers of items and ultimately the acquisition of more abstract numerical skills. Here, we investigated whether excessive crowding occurs in developmental dyscalculia (DD), a neurodevelopmental disorder characterized by difficulty in learning the most basic numerical and arithmetical concepts, and whether it is found independently of associated major reading and attentional difficulties. We measured spatial crowding in two groups of adult individuals with DD and control subjects. In separate experiments, participants were asked to discriminate the orientation of a Gabor patch either in isolation or under spatial crowding. Orientation discrimination thresholds were comparable across groups when stimuli were shown in isolation, yet they were much higher for the DD group with respect to the control group when the target was crowded by closely neighbouring flanking gratings. The difficulty in discriminating orientation (as reflected by the combination of accuracy and reaction times) in the DD compared to the control group persisted over several larger target flanker distances. Finally, we found that the degree of such spatial crowding correlated with impairments in mathematical abilities even when controlling for visual attention and reading skills. These results suggest that excessive crowding effects might be a characteristic of DD, independent of other associated neurodevelopmental disorders.

Neuroplasticity in adult human visual cortex, Neuroscience & Biobehavioral Reviews Volume 112, May 2020, Pages 542-552.

Between 1-5:100 people worldwide have never experienced normotypic vision due to a condition called amblyopia, and about 1:4000 suffer from inherited retinal dystrophies that progressively lead to blindness. While a wide range of technologies and therapies are being developed to restore vision, a fundamental question still remains unanswered: would the adult visual brain retain a sufficient plastic potential to learn how to ‘see’ after a prolonged period of abnormal visual experience? In this review we summarize studies showing that the visual brain of sighted adults retains a type of developmental plasticity, called homeostatic plasticity, and this property has been recently exploited successfully for adult amblyopia recovery. Next, we discuss how the brain circuits reorganize when blindness occurs and when visual stimulation is partially restored by means of a ‘bionic eye’ in late blind adults with Retinitis Pigmentosa. The primary visual cortex in these patients slowly became activated by the artificial visual stimulation, indicating that sight restoration therapies can rely on a considerable degree of spared plasticity in adulthood.