Touch Interacts with Vision during Binocular Rivalry with a Tight Orientation Tuning,PLoS One, 3 (8), e58754.

Multisensory integration is a common feature of the mammalian brain that allows it to deal more efficiently with the ambiguity of sensory input by combining complementary signals from several sensory sources. Growing evidence suggests that multisensory interactions can occur as early as primary sensory cortices. Here we present incompatible visual signals (orthogonal gratings) to each eye to create visual competition between monocular inputs in primary visual cortex where binocular combination would normally take place. The incompatibility prevents binocular fusion and triggers an ambiguous perceptual response in which the two images are perceived one at a time in an irregular alternation. One key function of multisensory integration is to minimize perceptual ambiguity by exploiting cross-sensory congruence. We show that a haptic signal matching one of the visual alternatives helps disambiguate visual perception during binocular rivalry by both prolonging the dominance period of the congruent visual stimulus and by shortening its suppression period. Importantly, this interaction is strictly tuned for orientation, with a mismatch as small as 7.5 degrees between visual and haptic orientations sufficient to annul the interaction. These results indicate important conclusions: first, that vision and touch interact at early levels of visual processing where interocular conflicts are first detected and orientation tunings are narrow, and second, that haptic input can influence visual signals outside of visual awareness, bringing a stimulus made invisible by binocular rivalry suppression back to awareness sooner than would occur without congruent haptic input.

Long-term effects of monocular deprivation revealed with binocular rivalry gratings modulated in luminance and in color,J Vis, 6 (13), 

During development, within a specific temporal window called the critical period, the mammalian visual cortex is highly plastic and literally shaped by visual experience; to what extent this extraordinary plasticity is retained in the adult brain is still a debated issue. We tested the residual plastic potential of the adult visual cortex for both achromatic and chromatic vision by measuring binocular rivalry in adult humans following 150 minutes of monocular patching. Paradoxically, monocular deprivation resulted in lengthening of the mean phase duration of both luminance-modulated and equiluminant stimuli for the deprived eye and complementary shortening of nondeprived phase durations, suggesting an initial homeostatic compensation for the lack of information following monocular deprivation. When equiluminant gratings were tested, the effect was measurable for at least 180 minutes after reexposure to binocular vision, compared with 90 minutes for achromatic gratings. Our results suggest that chromatic vision shows a high degree of plasticity, retaining the effect for a duration (180 minutes) longer than that of the deprivation period (150 minutes) and twice as long as that found with achromatic gratings. The results are in line with evidence showing a higher vulnerability of the P pathway to the effects of visual deprivation during development and a slower development of chromatic vision in humans.

Early interaction between vision and touch during binocular rivalry,Multisens Res, 3 (26), 291-306.

Multisensory integration is known to occur at high neural levels, but there is also growing evidence that cross-modal signals can be integrated at the first stages of sensory processing. We investigated whether touch specifically affected vision during binocular rivalry, a particular type of visual bistability that engages neural competition in early visual cortices. We found that tactile signals interact with visual signals outside of awareness, when the visual stimulus congruent with the tactile one is perceptually suppressed during binocular rivalry and when the interaction is strictly tuned for matched visuo-tactile spatial frequencies. We also found that voluntary action does not play a leading role in mediating the effect, since the interaction was observed also when tactile stimulation was passively delivered to the finger. However, simultaneous presentation of visual and tactile stimuli is necessary to elicit the interaction, and an asynchronous priming touch stimulus is not affecting the onset of rivalry. These results point to a very early cross-modal interaction site, probably V1. By showing that spatial proximity between visual and tactile stimuli is a necessary condition for the interaction, we also suggest that the two sensory spatial maps are aligned according to retinotopic coordinates, corroborating the hypothesis of a very early interaction between visual and tactile signals during binocular rivalry.

Touch influences visual perception with a tight orientation-tuning,PLoS One, 11 (8), e79558.

Stimuli from different sensory modalities are thought to be processed initially in distinct unisensory brain areas prior to convergence in multisensory areas. However, signals in one modality can influence the processing of signals from other modalities and recent studies suggest this cross-modal influence may occur early on, even in ‘unisensory’ areas. Some recent psychophysical studies have shown specific cross-modal effects between touch and vision during binocular rivalry, but these cannot completely rule out a response bias. To test for genuine cross-modal integration of haptic and visual signals, we investigated whether congruent haptic input could influence visual contrast sensitivity compared to incongruent haptic input in three psychophysical experiments using a two-interval, two-alternative forced-choice method to eliminate response bias. The initial experiment demonstrated that contrast thresholds for a visual grating were lower when exploring a haptic grating that shared the same orientation compared to an orthogonal orientation. Two subsequent experiments mapped the orientation and spatial frequency tunings for the congruent haptic facilitation of vision, finding a clear orientation tuning effect but not a spatial frequency tuning. In addition to an increased contrast sensitivity for iso-oriented visual-haptic gratings, we found a significant loss of sensitivity for orthogonally oriented visual-haptic gratings. We conclude that the tactile influence on vision is a result of a tactile input to orientation-tuned visual areas.