Long Integration Time for Accelerating and Decelerating Visual, Tactile and Visuo-tactile Stimuli, Multisensory Research, 1-2 (26), 53-68.

The human visual system is good at discriminating speed but not acceleration. However, as speed is seldom constant, it is important to be able to extract speed in conditions of acceleration and deceleration. We measured visual, tactile and bimodal speed-matching over a wide range of accelerations and decelerations in a 2IFC procedure. Both visual and tactile stimuli were generated on physical wheels etched with a sinusoidal profile. During different experimental sessions the wheels could be seen, or touched, or both. Comparisons between different unimodal and bimodal matched speeds revealed similar integration times for the two modalities, in both cases around one second, suggesting that it occurs at a relatively high level of processing. Bimodal precision of speed discrimination was better than unimodal discrimination, as predicted by the maximum likelihood model of optimal integration.

Spatio-temporal topography of saccadic overestimation of time,Vision Res, (83C), 56-65.

Rapid eye movements (saccades) induce visual misperceptions. A number of studies in recent years have investigated the spatio-temporal profiles of effects like saccadic suppression or perisaccadic mislocalization and revealed substantial functional similarities. Saccade induced chronostasis describes the subjective overestimation of stimulus duration when the stimulus onset falls within a saccade. In this study we aimed to functionally characterize saccade induced chronostasis in greater detail. Specifically we tested if chronostasis is influenced by or functionally related to saccadic suppression. In a first set of experiments, we measured the perceived duration of visual stimuli presented at different spatial positions as a function of presentation time relative to the saccade. We further compared perceived duration during saccades for isoluminant and luminant stimuli. Finally, we investigated whether or not saccade induced chronostasis is dependent on the execution of a saccade itself. We show that chronostasis occurs across the visual field with a clear spatio-temporal tuning. Furthermore, we report chronostasis during simulated saccades, indicating that spurious retinal motion induced by the saccade is a prime origin of the phenomenon.

Spatiotopic neural representations develop slowly across saccades,Curr Biol, 5 (23), R193-194.

One of the long-standing unsolved mysteries of visual neuroscience is how the world remains apparently stable in the face of continuous movements of eyes, head and body. Many factors seem to contribute to this stability, including rapid updating mechanisms that temporarily remap the visual input to compensate for the impending saccade [1]. However, there is also a growing body of evidence pointing to more long-lasting spatiotopic neural representations, which remain solid in external rather than retinal coordinates [2-6]. In this study, we show that these spatiotopic representations take hundreds of milliseconds to build up robustly.

A mechanism for detecting coincidence of auditory and visual spatial signals,Multisens Res, 4 (26), 333-345.

Information about the world is captured by our separate senses, and must be integrated to yield a unified representation. This raises the issue of which signals should be integrated and which should remain separate, as inappropriate integration will lead to misrepresentation and distortions. One strong cue suggesting that separate signals arise from a single source is coincidence, in space and in time. We measured increment thresholds for discriminating spatial intervals defined by pairs of simultaneously presented targets, one flash and one auditory sound, for various separations. We report a ‘dipper function’, in which thresholds follow a ‘U-shaped’ curve, with thresholds initially decreasing with spatial interval, and then increasing for larger separations. The presence of a dip in the audiovisual increment-discrimination function is evidence that the auditory and visual signals both input to a common mechanism encoding spatial separation, and a simple filter model with a sigmoidal transduction function simulated the results well. The function of an audiovisual spatial filter may be to detect coincidence, a fundamental cue guiding whether to integrate or segregate.

BOLD human responses to chromatic spatial features,Eur J Neurosci, 2 (38), 2290-2299.

Animal physiological and human psychophysical studies suggest that an early step in visual processing involves the detection and identification of features such as lines and edges, by neural mechanisms with even- and odd-symmetric receptive fields. Functional imaging studies also demonstrate mechanisms with even- and odd-receptive fields in early visual areas, in response to luminance-modulated stimuli. In this study we measured fMRI BOLD responses to 2-D stimuli composed of only even or only odd symmetric features, and to an amplitude-matched random noise control, modulated in red-green equiluminant colour contrast. All these stimuli had identical power but different phase spectra, either highly congruent (even or odd symmetry stimuli) or random (noise). At equiluminance, V1 BOLD activity showed no preference between congruent- and random-phase stimuli, as well as no preference between even and odd symmetric stimuli. Areas higher in the visual hierarchy, both along the dorsal pathway (caudal part of the intraparietal sulcus, dorsal LO and V3A) and the ventral pathway (V4), responded preferentially to odd symmetry over even symmetry stimuli, and to congruent over random phase stimuli. Interestingly, V1 showed an equal increase in BOLD activity at each alternation between stimuli of different symmetry, suggesting the existence of specialised mechanisms for the detection of edges and lines such as even- and odd-chromatic receptive fields. Overall the results indicate a high selectivity of colour-selective neurons to spatial phase along both the dorsal and the ventral pathways in humans.

Contextual effects in interval-duration judgements in vision, audition and touch,Exp Brain Res.

We examined the effect of temporal context on discrimination of intervals marked by auditory, visual and tactile stimuli. Subjects were asked to compare the duration of the interval immediately preceded by an irrelevant “distractor” stimulus with an interval with no distractor. For short interval durations, the presence of the distractor affected greatly the apparent duration of the test stimulus: short distractors caused the test interval to appear shorter and vice versa. For very short reference durations (< o =100 ms), the contextual effects were large, changing perceived duration by up to a factor of two. The effect of distractors reduced steadily for longer reference durations, to zero effect for durations greater than 500 ms. We found similar results for intervals defined by visual flashes, auditory tones and brief finger vibrations, all falling to zero effect at 500 ms. Under appropriate conditions, there were strong cross-modal interactions, particularly from audition to vision. We also measured the Weber fractions for duration discrimination and showed that under the conditions of this experiment, Weber fractions decreased steadily with duration, following a square-root law, similarly for all three modalities. The magnitude of the effect of the distractors on apparent duration correlated well with Weber fraction, showing that when duration discrimination was relatively more precise, the context dependency was less. The results were well fit by a simple Bayesian model combining noisy estimates of duration with the action of a resonance-like mechanism that tended to regularize the sound sequence intervals.

Erratum to: Contextual effects in interval-duration judgements in vision, audition and touch,Exp Brain Res.

Blood oxygen level-dependent activation of the primary visual cortex predicts size adaptation illusion,J Neurosci, 40 (33), 15999-16008.

In natural scenes, objects rarely occur in isolation but appear within a spatiotemporal context. Here, we show that the perceived size of a stimulus is significantly affected by the context of the scene: brief previous presentation of larger or smaller adapting stimuli at the same region of space changes the perceived size of a test stimulus, with larger adapting stimuli causing the test to appear smaller than veridical and vice versa. In a human fMRI study, we measured the blood oxygen level-dependent activation (BOLD) responses of the primary visual cortex (V1) to the contours of large-diameter stimuli and found that activation closely matched the perceptual rather than the retinal stimulus size: the activated area of V1 increased or decreased, depending on the size of the preceding stimulus. A model based on local inhibitory V1 mechanisms simulated the inward or outward shifts of the stimulus contours and hence the perceptual effects. Our findings suggest that area V1 is actively involved in reshaping our perception to match the short-term statistics of the visual scene.

Spatial position information accumulates steadily over time, J Neurosci 33(47):18396-18401.

One of the more enduring mysteries of neuroscience is how the visual system constructs robust maps of the world that remain stable in the face of frequent eye-movements. Here we show that encoding the position of objects in external space is a relatively slow process, building up over hundreds of milliseconds. We display targets to which human subjects saccade after a variable preview duration. As they saccade, the target is displaced leftwards or rightwards, and subjects report the displacement direction. When subjects saccade to targets without delay, sensitivity is poor: but if the target is viewed for 300-500 ms before saccading, sensitivity is similar to that during fixation with a strong visual mask to dampen transients. These results suggest that the poor displacement thresholds usually observed in the “saccadic suppression of displacement” paradigm do not reflect the action of special mechanisms conferring saccadic stability, but the fact that the target has had insufficient time to be encoded in memory. Under more natural conditions, trans-saccadic displacement detection is as good as in fixation, when the displacement transients are masked.

Selective tuning for contrast in macaque area V4,J Neurosci, 47 (33), 18583-18596.

Visually responsive neurons typically exhibit a monotonic-saturating increase of firing with luminance contrast of the stimulus and are able to adapt to the current spatiotemporal context by shifting their selectivity, therefore being perfectly suited for optimal contrast encoding and discrimination. Here we report the first evidence of the existence of neurons showing selective tuning for contrast in area V4d of the behaving macaque (Macaca mulatta), i.e., narrow bandpass filter neurons with peak activity encompassing the whole range of visible contrasts and pronounced attenuation at contrasts higher than the peak. Crucially, we found that contrast tuning emerges after a considerable delay from stimulus onset, likely reflecting the contribution of inhibitory mechanisms. Selective tuning for luminance contrast might support multiple functions, including contrast identification and the attentive selection of low contrast stimuli.