Transient spatiotopic integration across saccadic eye movements mediates visual stability,J Neurophysiol, 4 (109), 1117-1125. 

Eye movements pose major problems to the visual system, because each new saccade changes the mapping of external objects on the retina. It is known that stimuli briefly presented around the time of saccades are systematically mislocalized, whereas continuously visible objects are perceived as spatially stable even when they undergo large transsaccadic displacements. In this study we investigated the relationship between these two phenomena and measured how human subjects perceive the position of pairs of bars briefly displayed around the time of large horizontal saccades. We show that they interact strongly, with the perisaccadic bar being drawn toward the other, dramatically altering the pattern of perisaccadic mislocalization. The interaction field extends over a wide range (200 ms and 20 degrees ) and is oriented along the retinotopic trajectory of the saccade-induced motion, suggesting a mechanism that integrates pre- and postsaccadic stimuli at different retinal locations but similar external positions. We show how transient changes in spatial integration mechanisms, which are consistent with the present psychophysical results and with the properties of “remapping cells” reported in the literature, can create transient craniotopy by merging the distinct retinal images of the pre- and postsaccadic fixations to signal a single stable object.

Attention to Bright Surfaces Enhances the Pupillary Light Reflex,Journal of Neuroscience, 5 (33), 2199-2204.

One longstanding question is how early in the visual system attention exerts its influence. Here we show that an effect of attention can be measured at the earliest possible stage of visual information processing, as a change in the optics of the eye. We tested human subjects and found that covertly attending to bright surfaces results in an enhanced pupillary light reflex (PLR)-the pupillary constriction that occurs in response to light increments. The PLR optimizes the optical quality of the retinal image across illumination conditions, increasing sensitivity by modulating retinal illumination, and improving acuity by reducing spherical aberrations. The attentional modulation of the PLR that we describe constitutes a new mechanism through which vision is affected by attention; we discuss three alternatives for the neural substrates of this effect, including the possibility that attention might act indirectly, via its well established effects in early visual cortex.

Attention to bright surfaces enhances the pupillary light reflex,J Neurosci, 5 (33), 2199-2204.

One longstanding question is how early in the visual system attention exerts its influence. Here we show that an effect of attention can be measured at the earliest possible stage of visual information processing, as a change in the optics of the eye. We tested human subjects and found that covertly attending to bright surfaces results in an enhanced pupillary light reflex (PLR)-the pupillary constriction that occurs in response to light increments. The PLR optimizes the optical quality of the retinal image across illumination conditions, increasing sensitivity by modulating retinal illumination, and improving acuity by reducing spherical aberrations. The attentional modulation of the PLR that we describe constitutes a new mechanism through which vision is affected by attention; we discuss three alternatives for the neural substrates of this effect, including the possibility that attention might act indirectly, via its well established effects in early visual cortex.

Pupil constrictions to photographs of the sun,Journal of Vision, 6 (13).

The pupil constricts in response to light increments and dilates with light decrements. Here we show that a picture of the sun, introducing a small overall decrease in light level across the field of view, results in a pupillary constriction. Thus, the pictorial representation of a high-luminance object (the sun) can override the normal pupillary dilation elicited by a light decrement. In a series of experiments that control for a variety of factors known to modulate pupil size, we show that the effect (a) does not depend on the retinal position of the images and (b) is modulated by attention. It has long been known that cognitive factors can affect pupil diameter by producing pupillary dilations. Our results indicate that high-level visual analysis (beyond the simple subcortical system mediating the pupillary response to light) can also induce pupillary constriction, with an effect size of about 0.1 mm.