Supramodal agnosia for oblique mirror orientation in patients with periventricular leukomalacia, Cortex.

Periventricular leukomalacia (PVL) is characterized by focal necrosis at the level of the periventricular white matter, often observed in preterm infants. PVL is frequently associated with motor impairment and with visual deficits affecting primary stages of visual processes as well as higher visual cognitive abilities. Here we describe six PVL subjects, with normal verbal IQ, showing orientation perception deficits in both the haptic and visual domains. Subjects were asked to compare the orientation of two stimuli presented simultaneously or sequentially, using both a two alternative forced choice (2AFC) orientation-discrimination and a matching procedure. Visual stimuli were oriented gratings or bars or collinear short lines embedded within a random pattern. Haptic stimuli comprised two rotatable wooden sticks. PVL patients performed at chance in discriminating the oblique orientation, both for visual and haptic stimuli. Moreover when asked to reproduce the oblique orientation, they often oriented the stimulus along the symmetric mirror orientation. The deficit generalized to stimuli varying in many low level features, was invariant for spatiotopic object orientation, and also occurred for sequential presentations. The deficit was specific to oblique orientations, and not for horizontal or vertical stimuli. These findings show that PVL can affect a specific network involved with the supramodal perception of mirror symmetry orientation.

Cortical BOLD responses to moderate- and high-speed motion in the human visual cortex, Sci Rep, 1 (8), 8357.

We investigated the BOLD response of visual cortical and sub-cortical regions to fast drifting motion presented over wide fields, including the far periphery. Stimuli were sinusoidal gratings of 50% contrast moving at moderate and very high speeds (38 and 570 °/s), projected to a large field of view (~60°). Both stimuli generated strong and balanced responses in the lateral geniculate nucleus and the superior colliculus. In visual cortical areas, responses were evaluated at three different eccentricities: central 0-15°; peripheral 20-30°; and extreme peripheral 30-60°. “Ventral stream” areas (V2, V3, V4) preferred moderate-speeds in the central visual field, while motion area MT+ responded equally well to both speeds at all eccentricities. In all other areas and eccentricities BOLD responses were significant and equally strong for both types of moving stimuli. Support vector machine showed that the direction of the fast-speed motion could be successfully decoded from the BOLD response in all visual areas, suggesting that responses are mediated by motion mechanisms rather than being an unspecific preference for fast rate of flicker. The results show that the visual cortex responds to very fast motion, at speeds generated when we move our eyes rapidly, or when moving objects pass by closely.

Rhythmic motor behaviour influences perception of visual time, Proc Biol Sci, 1888 (285).

Temporal processing is fundamental for an accurate synchronization between motor behaviour and sensory processing. Here, we investigate how motor timing during rhythmic tapping influences perception of visual time. Participants listen to a sequence of four auditory tones played at 1 Hz and continue the sequence (without auditory stimulation) by tapping four times with their finger. During finger tapping, they are presented with an empty visual interval and are asked to judge its length compared to a previously internalized interval of 150 ms. The visual temporal estimates show non-monotonic changes locked to the finger tapping: perceived time is maximally expanded at halftime between the two consecutive finger taps, and maximally compressed near tap onsets. Importantly, the temporal dynamics of the perceptual time distortion scales linearly with the timing of the motor tapping, with maximal expansion always being anchored to the centre of the inter-tap interval. These results reveal an intrinsic coupling between distortion of perceptual time and production of self-timed motor rhythms, suggesting the existence of a timing mechanism that keeps perception and action accurately synchronized.

Adult cortical plasticity peaks after every meal, ECVP, 41nd European Conference on Visual Perception (ECVP)”, 2018, Trieste, Italia.